Что такое модуль зубчатого колеса
Перейти к содержимому

Что такое модуль зубчатого колеса

  • автор:

Модуль зубчатого колеса

МОДУЛЬ ЗУБЧАТОГО КОЛЕСА — геометрический параметр, линейная величина, пропорциональная размерам зубчатого колеса. Различают осевой, окружной и нормальный модуль зубчатого колеса … Большой Энциклопедический словарь

модуль зубчатого колеса — отношение шага зубьев колеса (расстояние между соответствующими точками соседних зубьев, измеренное по дуге окружности) к числу π. Значения модуля зубчатого колеса стандартизованы. Геометрические размеры зубчатых колёс выбираются пропорционально… … Энциклопедический словарь

нормальный модуль зубьев конического зубчатого колеса — (mn) нормальный модуль Линейная величина, в раз меньшая нормального шага зубьев конического зубчатого колеса. Примечания 1. Различают нормальные модули: внешний (mne), средний (mnm), внутренний (mni) и др. (mnx) делительные; внешний (mnwe),… … Справочник технического переводчика

нормальный модуль цилиндрического зубчатого колеса — (mn) модуль Делительный нормальный модуль зубьев цилиндрического зубчатого колеса, принимаемый в качестве расчетного и равный модулю нормального исходного контура. Примечание В случаях, исключающих возможность возникновения недоразумений, индекс… … Справочник технического переводчика

окружной модуль зубьев конического зубчатого колеса — (mt) окружной модуль Линейная величина, в раз меньшая окружного шага зубьев конического зубчатого колеса. Примечание Различают окружные модули: внешний (mte), средний (mtm), внутренний (mti) и др. (mtx) делительные; внешний (mtwe), средний (mtwm) … Справочник технического переводчика

расчетный модуль конического зубчатого колеса — расчетный модуль Окружной или нормальный делительный модуль в расчетном сечении. Примечания 1. Расчетный модуль конического зубчатого колеса из семейства сопряженных конических зубчатых колес, форма и размеры зубьев которых определяются парой… … Справочник технического переводчика

Нормальный модуль цилиндрического зубчатого колеса т n — 2.1.2. Нормальный модуль цилиндрического зубчатого колеса т n Модуль Делительный нормальный модуль зубьев цилиндрического зубчатого колеса, принимаемый в качестве расчетного и равный модулю нормального исходного контура. Примечание. В случаях,… … Словарь-справочник терминов нормативно-технической документации

Нормальный модуль зубьев конического зубчатого колеса — 67. Нормальный модуль зубьев конического зубчатого колеса Нормальный модуль mn Источник: ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения … Словарь-справочник терминов нормативно-технической документации

Окружной модуль зубьев конического зубчатого колеса — 59. Окружной модуль зубьев конического зубчатого колеса Окружной модуль mt Источник: ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения … Словарь-справочник терминов нормативно-технической документации

Расчетный модуль конического зубчатого колеса — 146. Расчетный модуль конического зубчатого колеса Расчетный модуль Источник: ГОСТ 19325 73: Передачи зубчатые конические. Термины, определения и обозначения оригинал документа … Словарь-справочник терминов нормативно-технической документации

Модуль зубьев зубчатого колеса

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня».

Зубчатое колесо

За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров. Для расчета этого параметра применяют следующие формулы:

Параметры зубчатых колес

где t — шаг. Модуль зубчатого колеса можно рассчитать и следующим образом:

где h — высота зубца. И, наконец,

где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Формула расчета параметров прямозубой передачи

Расчет модуля зубчатого колеса

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

проведя преобразование, получим:

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:

выполнив преобразование, находим:

Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным

где h’- высота головки. Высоту головки приравнивают к m:

Проведя математические преобразования с подстановкой, получим:

Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:

где h“- высота ножки зубца. Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

Устройство зубчатого колеса

h’ = 1,25m.Выполнив подстановку в правой части равенства, имеем:

что соответствует формуле:

и если выполнить подстановку, то получим:

Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25. Следующий важный размер, толщину зубца s принимают приблизительно равной:

  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Исходные данные и замеры

На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается. Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.

Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров. Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.

Результаты расчетов

Для более крупных потребуются измерения и вычисления. Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:

Последовательность действий следующая:

  • измерить диаметр штангенциркулем;
  • сосчитать зубцы;
  • разделить диаметр на z+2;
  • округлить результат до ближайшего целого числа.

Зубец колеса и его параметры

Данный метод подходит как для прямозубых колес, так и для косозубых.

Расчет параметров колеса и шестерни косозубой передачи

Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.

Подскажите пожалуйста что такое модуль шестерни

Гриценко все абсолютно правильно ответил, но иногда в лом считать количество зубьев (за сотню бывает) и измерять диаметр. Поэтому, если по простому, то это расстояние между соседними зубьями, умноженное на пи.

Т. е. если расстояние по делительной окружности (середине высоты зубьев) будет около 3 мм, то модуль- единица, если чуток меньше 5 мм, то модуль — 1,5. Только линейка и нужна. Пока никогда не ошибался.

«Поэтому, если по простому, то это расстояние между соседними зубьями, умноженное на пи. «
А так ли это на самом деле?

Что такое модуль зубчатой передачи

Стал разбираться в параметрах зубчатой передачи и понял, что выражение "чёрт ногу сломит" это как раз про неё.

Самое главное и расчетное определение здесь — это модуль.
Он называется "модуль зубьев" и Политехническим словарем определяется как..
отношение шага зубьев к . "числу пи" ? (первый вопрос)

Далее. Википедия приводит среди прочих приводит такое определение, которое мне кажется верным: число миллиметров делительной окружности приходящееся на один зуб.
Т.е. мы берем окружность и делим её на количество зубов шестерни и получаем модуль — то расстояние которое есть между двумя зубьями.

Но зачем-то приводится еще второе определение,
Что модуль это шаг деленное на число "ПИ"

Кто понимает, пожалуйста, объясните, по тому как у меня уже мозг закипает.

Википедия приводит два таких же противоречивых определения:
"m — модуль колеса. Модулем зацепления называется линейная величина в n раз меньшая окружного шага P или отношение шага по любой концентрической окружности зубчатого колеса к пи , то есть модуль — число миллиметров диаметра делительной окружности приходящееся на один зуб."

вот ответ из майл ру "Диаметр делительной окружности разделит на число зубьев. Делительная окр. это диаметр шестерни по средней части зуба
Источник: Университет МГИУ"

учебник — Техническое черчение, изданный еще в 1972 году, вводит понятие Торцового шага t3 называется расстояние по делительной окружности между одноименными профилями смежных зубьев. А Модуль шестерни (зубчатого колеса) по версии учебника -можно выразить еще и как отношение торцового шага к числу ;:
m= tз/;. Что противоречит основному понятию и является абсурдом.

Информация взята с сайта: http://slotcar-dz.com/chto-takoe-slotcar/modul-
shesterni

Ни на одном графическом рисунке я модуля пока не нашел.

Похоже, что ошибка выросла вот из этого определения:
Модулем m называется длина, приходящаяся по диаметру делительной окружности на один зуб колеса; численно модуль равен отношению диаметра делительной окружности к числу зубьев.
Это из tehinfor.ru Технологии и профессии.

Пока вывод такой.
Шаг это расстояние на размер от одного зуба до другого по делительной окружности. А модуль это расстояние одного шага. на диаметре делительной окружности.
Т.е. модуль соотносит число зубьев и диаметр.
Колесо по диаметру может большое и маленькое. И зубьев может быть много и мало. Вот это соотношение и выражает модуль.
А путаница тут есть.

Делительными окружностями называются соприкасающиеся окружности пары зубчатых ко- лес, катящиеся одна по другой без скольжения

Переписчики чужого были всегда. Один ошибся, другой переписал и поехало. Мне тоже приходилось путаться, насчет ошибок даже не предполагал. В учебнике всё, вроде, было святое и пересмотру или сомнениям не подлежало.
Рад встретить смелого человека!
Анатолий.

Спасибо и Вам, Анатолий за отклик. Никогда не тяготел к этой теоретической механике, но нужда заставила и пришлось разбираться. И как всегда все напутано.

Проблема инженерная и фрезеровщику с такой проблемой не приходилось
сталкиваться. На чертеже было всё указано, поставил нужную фрезу и погнал.
Только вот глубину зуба вроде не указывалось. Но это очень просто-всегда
отношение одинаковое
Но так интересную проблему подняли.
С уважением.

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2023. Портал работает под эгидой Российского союза писателей. 18+

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *