Как по передаточной функции определить работоспособность
Перейти к содержимому

Как по передаточной функции определить работоспособность

  • автор:

5. Передаточные функции и уравнения динамики замкнутых систем автоматического регулирования (САР)

Продолжаем публикацию лекций по курсу «Управление в Технических Системах» автор — Олег Степанович Козлов на кафедре Э7 МГТУ им. Н.Э. Баумана.

Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется. В предыдущих сериях:

Будет как всегда позновательной увлекательно и жестко

5.1. Главная передаточная функция. Передаточные функции по возмущающему воздействию и для ошибки (рассогласования)

Используя структурные преобразования (см. раздел 4), структурную схему практически любой линейной или линеаризованной САР (САУ) можно привести к виду:

Рисунок 5.1.1 Типовая струкутура САР

Рисунок 5.1.1 Типовая струкутура САР

Где функции по времени:

– регулируемая величина (выходное воздействие);

Или в изображениях:

Определение: Если единичная обратная связь охватывает все элементы (звенья) САР – она называется главной.

Определение: Если главная обратная связь отсутствует — САР считается разомкнутой.

Передаточная функция может быть любой сложности (т.е. содержать местные обратные связи, параллельные и последовательные цепи и т.д.).

Возмущающих воздействий может быть несколько и приложены они могут быть в любом месте структурной схемы.

Передаточную функцию которую в Теории Управления называют передаточной функцией разомкнутой САР, будем представлять в следующем виде (для единообразия):

где – общий коэффициент усиления; – полиномы по степеням переменной , причем свободные члены в них равны 1 (единице).

Учитывая, что САР линейна или линеаризована, разделим на структурной схеме каналы прохождения управляющего и возмущающего воздействий. Выделим в отдельное звено (может быть и очень сложное) ту часть системы, через которую проходит возмущающее воздействие обозначим ее через Структурная схема САР принимает вид:

Рисунок 5.1.2 Структурная схема общего вида с передаточной функцией и внешним воздействием

Рисунок 5.1.2 Структурная схема общего вида с передаточной функцией и внешним воздействием

В Теории Управления используют 3 основных передаточных функций замкнутой САР:

главная передаточная функция ;

передаточная функция по возмущающему воздействию ;

передаточная функция для ошибки (рассогласования)

Рассмотрим более подробно вышеупомянутые передаточные функции.

Главная передаточная функция

Главная передаточная функция -передаточная функция по управляющему воздействию математическое определение этой передаточной функции:

выведем формулу при условии если возмущеющие воздействие равно . «Обойдем» структурную схемв по контуру:

Примечание. Формула (5.3) совпадает с формулой для передаточной функции цепи с местной единичной обратной связью (см. раздел 4 – «Структурные преобразования»).

Подставляя вместо ее выражение через полиномы и

Анализ выражения (5.4) показывает, что свойства главной передаточной функции замкнутой САР однозначно определяются свойствами разомкнутой САР, т.е. через полиномы и .

Передаточная функция замкнутой САР по внешнему возмущающему воздействию

Дадим математическое определение рассматриваемой передаточной функции если управляющие воздействи , а возмущеющие воздействие отличное от нуля . В этом случае (см. рисунок 5.1.2) получается:

Перрейдем к изображением и «обойдем» схему (см. рис. 5.1.2) по контуру

Подставляя вместо ее выражение через полиномы и получаем:

где: — вид данного полинома зависит от места приложения возмущающего воздействия;

Формулы 5.4 и 5.6 имеют общий занаменатель

Передаточная функция замкнутой САР для ошибки (рассогласования)

Дадим математическое определение рассматриваемой передаточной функции если управляющие воздействиt отлично от 0 , а возмущеющие воздействие равно 0 . В этом случае для передаточной функции получается (см. рис. 5.1.2):

Сделаем вывод соответствующих формул, выполнив «обход» по контуру схемы (см. рис. 5.1.2)

Учитывая формулу для главной передаточной функции можно записать выражения для передаточной функции рассоглаосвания:

Подставляя вместо ее выражение через полиномы и получаем:

Опять замечаем, что знаменатель передаточной функции равен полиному следовательно, характерным признаком передаточных функций замкнутой САР является общность знаменателей ! ! !

В Теории Управления выражение имеет «собственное» название: характеристический полином замкнутой САР.

5.2 Уравнения динамики замкнутой САР

Как указывалось в подразделе 5.1, любую замкнутую САР можно привести к виду представленному на рисунке 5.2.1:

Рисунок 5.2.1 Общая схема замкнутой САР с возмущающим воздействием

Рисунок 5.2.1 Общая схема замкнутой САР с возмущающим воздействием

Выведены соотношения для 3-х основных передаточных функций замкнутой САР позволяют записать выражения для регулируемой величины в изображениях:

Подставляя значения и через полиномы и разомкнутой САР получаем:

подставим значения для характеристического полинома получим выражение для динамического уравнения замкнутой САР в изображениях:

Переходя к оригиналам получаем символическую форму записи обыкновенного дифференциального уравнения замкнутой САР:

Решение диференциального уравнения состоит из двух частей:

где: — собственная часть, решение однородного дифференциального уравнения ;

— вынужденная часть решения (частное решение), определяемая правой частью уравнения ( 5.2.3 ).

Решения однородного уравнения замкнутой САР:

записываем соответствующее характеристическое уравнение:

находим корни степенного уравнения если все корни уравнения разные:

Обычно находят по виду правой части уравнения (5.2.3) или, используя другие методы (например, метод вариаций постоянных).

Необходимо отметить, что порядок дифференциального уравнения (5.2.3) равен «n», т.е. такой же, как и у разомкнутой САР

если нет возмущающего воздействия, т.к. порядок дифференциального оператора L(p) обычно значительно выше, чем N(p).

По аналогии с выводом уравнения (5.2.3) можно получить уравнение динамики для рассогласования :

подставляя значения и (см. 5.6 и 5.9) получаем:

Уравнение (5.2.5)- уравнение динамики замкнутой САР в ихображениях для рассогласования (ошибки) при наличии управляющего и возмущающего воздействий.

Особенностью данного уравнения (5.2.5) является то, что левая часть его практически совпадает с левой частью (5.2.2), в то время, как порядок правой части заметно выше , т.к. порядок многочленов D (s) и L (s)одинаков, а порядок N(s) меньше L(s).

Это означает, что внешние воздействия и влияют на более сильным образом.

Дифференциальное уравнение замкнутой САР для ошибки:

Способы решения уравнения ( 5.2.6 ) такие же, как и для уравнения ( 5.2.3 ) .

5.3. Частотные характеристики замкнутой САР.

Наибольший интерес при анализе замкнутых САР имеет АФЧХ замкнутой САР по управляющему воздействию:

где передаточная функция:

Учитывая, что — комплексное число, по аналогии имеем:

Где — вещественная часть функции, — мнимая часть функиции.

Рисунок 5.3.1 Пример зависмостей P и Q

Рисунок 5.3.1 Пример зависмостей P и Q

На этих рисунках представлен «примерный» вид зависимостей P (w)и Q(w) для «какой-то» замкнутой САР причем P(w) — четная функция, т.е. P(w) = P(-w); Q(w) — нечетная функция, т.е. Q(w) = — Q(-w).

Если известны частотные свойства разомкнутой САР, то можно определить частотные свойства замкнутой САР. Воспользуемся показательной формой для АФЧХ

Где — амплитуда (модуль), — сдвиг фазы (фаза). Подставляя это в (5.3.1), имеем получаем:

Приравнивая чисто вещественные и чисто мнимые части, имеем

Для нахождения амплитуды и сдвига фазы замкнутой передаточной функции как функции от амплитуды и сдвига фазы разомкнутой системы. Разделив (2) на (1) получим:

Сдвиг фазы замкнутой системы через характеристики разомкнутой системы:

Для получения амплитуды замкнутоей системы возведем оба уравнения системы (5.3.5) в квадрат:

складываем эти два уравнения:

Аналогичным образом можно выразить, например, P(w) и Q(w) — характеристики замкнутой САР через u(w) и u(w) — характеристики разомкнутой САР.

Пример

В качестве примера на рисунке 5.4.1 приведена модель помещения, в котором с помощью интегрирующего звена обеспечивается подвод тепла для поддержания температуры. Температура задается в виде ступенчатой функции. В качестве внешнего воздействия используется внешняя температура.

5.4.1 Рисунок сравнение физической модели и передаточных функций

5.4.1 Рисунок сравнение физической модели и передаточных функций

Передаточные функции построены средтвами автоматического анализа. Видно, что знаменатель главной передаточной функции и знаменатель передаточной функции по возмущающиму воздействию одинаковы.

5.4.2 Результаты моделирования.

5.4.2 Результаты моделирования.

График справа показывает расхождение результаты модели (зеленая линия) и передаточных функций (синит линя) в начале расчета, но потом функции сходятся. Расхождение объясняются разными начальными условиями по производным. Слева тот же самый график, но в это случае начальное состояние определено с помощю загрузки стационарного состояния, полученного предварительным моделированием. В этом случае совпадение модели и передаточных функций полное.

Как по передаточной функции определить работоспособность

Теория автоматического управления как математическая теория информационных процессов передачи и преобразования сигналов , страница 13

Прямое использование для синтеза неудобно, поэтому их сводят к последовательной коррекции.

Сведение параллельной коррекции к последовательной

Частоты от 0 до ωС влияют на работу САУ

Если ω>ωС, то условие (1) не выполняется, поэтому в существенном диапазоне частот можно пренебречь единицей.

Свойства локальной подсистемы определяются за счет свойств регулятора. Это позволяет прийти к той же структуре, что и при последовательном соединении.

Обычно задаются следующие параметры: W0(p) – объект управления, q – порядок астатизма, KC, KV, KA – добротности, .

Требуется найти WK(p)

Наиболее отработанным методом найдем WK(p)

7.2.1 Синтез корректирующих устройств по методу ЛАЧХ

Требования к объекту:

1. ЛАЧХ не должна иметь резонансных пиков, это позволяет использовать асимптотическую ЛАЧХ.

2.Объект не должен иметь трансцендентного звена запаздывания

Этапы синтеза:

1. Построение желаемой ЛАЧХ разомкнутой системы Lжел(ω)

2. Построение в этих же осях ЛАЧХ объекта L0(ω)

3. определяется корректирующее устройство в виде ЛАЧХ из условия

Это условие появилось, потому что Lжел должна получиться последовательным соединением корректирующего устройства и объекта управления. Отсюда

Как правило, вычислений не требуется, так как по ЛАЧХ можно графически найти необходимые величины.

4. Переход от ЛАЧХ корректирующего устройства к WK(p).

WK(p) может быть физически нереализуемой величиной. Признаком этого является m>n (порядок полинома числителя n меньше порядка знаменателя m)

Если n>m, то это реализуемо

— регулятор ПИ-типа, в нем m=n, что тоже является реализуемым.

Если мы получили нереализуемое устройство, то нужно скорректировать Lжел(ω)

5. Моделирование системы

Если после моделирования получается иное, чем хочется, то нужно корректировать Lжел.

Правила построения Lжел

Типовой вид Lжел(ω) следующий

1. Наклон низкочастотной (нч) части ЛАЧХ определяет порядок астатизма.

q=0 наклон 0 дБ/дек

q=1 наклон -20 дБ/дек

q=2 наклон -40 дБ/дек

2. Высота низкочастотной асимптоты Lнч определяет добротность системы.

Определять добротность будем на частоте ω=1 рад/с.

3. Наклон среднечастотной асимптоты принимается за -20 дБ/дек (ωав)

Существует теорема о связи ЛАЧХ и ФЧХ:

Если наклон ЛАЧХ на достаточно большом участке частот равен n*(-20) дБ/дек, то ФЧХ на этом же участке частот стремиться к рад.

n=0, тогда ФЧХ будет иметь вид

Вернемся к утверждению о использовании -20 дБ/дек

Наклон Lжел=-40 дБ/дек

Но по критерию устойчивости Найквиста обнаруживаем, что система находится на грани устойчивости, т.к.

Для обеспечения максимально возможного запаса по фазе Δφ наклон желаемой ЛАЧХ в районе частоты среза ωС выбирают равной -20 дБ/дек.

Это не удается сделать из-за наличия хотя бы одного интегратора в системе.

выбирается достаточно большим (± октава)

Октава – двукратное изменение частоты

4. Выбор частоты среза (ЧС)

ЧС определяет быстродействие системы

5. Высокочастотная часть (ВЧ) не оказывает существенного влияния на показания качества.

Это дает нам существенный произвол в выборе ЛАЧХ.

Lжел нужно выбирать таким же как у объекта, с тем чтобы ЛАЧХ корректирующего устройства была по возможности наиболее простой.

7.2.2 Аналитический синтез корректирующих устройств.

Синтез по форме.

1. задаться желаемой передаточной функцией Фжел(р) системы в соответствии с требуемыми показателями качества. Для этого используются корневые методы. Сущность в том, что корни характеристического уравнения помещаются в требуемое положение на комплексной плоскости, что и обеспечивает желаемое быстродействие и характер переходных процессов.

2. Определить желаемую передаточную функцию разомкнутой системы

3. Найти передаточную функцию корректирующего устройства

4. Моделирование системы

Если показатели качества не обеспечиваются, то перейти к пункту 1.

Выбор желаемой передаточной функции замкнутой системы.

n – порядок системы

Ограничим порядком астатизма q=1

В общем случае знаменатель имеет вид

Обозначим корни характеристического уравнения р1…рn

Для удобства задания быстродействия введем понятие среднегеометрического корня (СГК)

СГК связан с a0 следующим соотношением

по теореме Виета

Разделим Фжел(р) на а0, тогда получим

В итоге получим

В этом выражении коэффициент , где k=1,2,…n-1.

Коэффициент Сk безразмерный.

Где Т – базовая постоянная времени

Порядок выбора желаемой передаточной функции

1. Определить порядок n желаемой передаточной функции

, где n0 порядок объекта.

2. выбрать определенный способ распределения корней на комплексной плоскости.

3. Определить коэффициент Сk в характеристическом уравнении.

4. Определить величину среднегеометрического корня или базовую постоянную времени Т, исходя из требуемого быстродействия системы (обычно оно задано по времени переходного процесса)

7.2.3 Аналитический синтез при биномиальном распределении корней

Такая настройка характеризуется гарантированным отсутствием перерегулирования.

T выбирается на заключительном этапе проектирования, исходя из заданного времени процесса.

Передаточная функция

Пример . Объект управления (ОУ) описывается линейным дифференциальным уравнением третьего порядка:
(2)
1) Передаточная функция ОУ в общем случае может быть представлена в виде отношения
W(iω) = A(ω)e iφ(ω) = U(ω) + iV(ω),
где R(p)и Q(p) – изображения по Лапласу выходной и входной переменных ОУ, соответствующих левой и правой частям уравнения 1. Отсюда, передаточная функция будет иметь вид:
(3)
или
. (4)

2) Определим частотные характеристики ОУ. Известно, что частотная передаточная функция W(ω) может быть представлена в виде:
, (5)
где A(ω) – амплитудная частотная характеристика (АЧХ);
φ(ω) – фазовая частотная характеристика (ФЧХ);
U(ω) – вещественная частотная характеристика (ВЧХ);
V(ω) – мнимая частотная характеристика;
Подставим iω в выражение (3) вместо p . Получим:
(6)
На основе выражений (5) и (6) выделим отдельно амплитудную и фазовую частотные характеристики и подставим численные значения коэффициентов. Исходя из того, что:
A(ω) = |W(iω)|
φ(ω) = arg(W(iω))
(см. комплексные числа). Окончательно получим: (7)

3) Определим логарифмическую амплитудную частотную характеристику (ЛАЧХ).
Известно, что ЛАЧХ определяется из соотношения:
L(ω) = 20lg(A(ω)) (8)
Данная характеристика имеет размерность дБ (децибелы) и показывает изменение отношения мощностей выходной величины к входной. Для удобства ЛАЧХ строят в логарифмическом масштабе.
Фазовая частотная характеристика, построенная в логарифмическом масштабе, будет называться логарифмической фазовой частотной характеристикой (ЛФЧХ).
Примеры построения ЛАЧХ и ЛФЧХ для наших исходных данных приведены на рисунке 1.
Определим импульсную переходную (весовую) функцию. Весовая функция w(t) представляет собой реакцию системы на единичную импульсную функцию, поданную на ее вход. Весовая функция связана с передаточной функцией преобразованием Лапласа.
. (9)
Следовательно, весовую функцию можно найти, применив обратное преобразование Лапласа к передаточной функции.
w(t) = L -1 [W(p)] (10)


Рисунок 1 — L(ω) – ЛАЧХ системы (Дб); φ(ω) – ЛФЧХ системы (град); ω – частота входного сигнала (рад/с)

2. Математическое описание систем автоматического управления ч. 2.9 — 2.13

Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.

Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.

В предыдущих сериях:

В это части будут рассмотрены:

2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена).
2.10. Весовая и переходная функции звена (системы).
2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции.
2.12. Mетод переменных состояния.
2.13. Переход от описания переменных «вход-выход» к переменным состояния.

Попробуем применить, полученные знания на практике, создавая и сравнивая расчетные модели в разных видах. Будет интересно познавательно и жестко.

2.9. Использование обратных преобразований Лапласа для решения уравнений динамики САР (звена)

Рассмотрим динамическое звено САР изображенное на рисунке 2.9.1

Предположим, что уравнение динамики имеет вид:

где: — постоянные времени;
— коэффициент усиления.

Пусть известны отображения:

Найдем изображения для производных:

Подставим полученные выражения в уравнение динамики и получим уравнение динамики в изображениях:

B(s) — слагаемое, которое определяется начальными условиями, при нулевых начальных условиях B(s)=0.
W(s) — передаточная функция.

Передаточной функцией САР (звена) называется отношение изображений выходного сигнала к входному воздействию при нулевых н.у.

После того, как в явном виде найдено изображение для неизвестной выходной величины, нахождение оригинала не представляет сложностей. Либо по формуле Хэвисайда, либо разложением на элементарные дроби, либо по таблице из справочника.

Пример

Построить выходной сигнал звена САР при единичном входном воздействии и нулевых начальных условиях, если уравнение динамики звена имеет следующий вид:

входное воздействие: — единичное ступенчатое воздействие.

Выполним преобразование Лапласа:

Подставим в уравнение динамики и получим уравнение динамики в изображениях:

Для получения выходного сигнала из уравнения в изображениях выполним обратное преобразования Лапласа:

2.10. Весовая и переходная функции звена (системы).

Определение: Весовой функцией звена (системы) называется реакция системы при нулевых н.у. на единичное импульсное воздействие.

Определение: Переходной функцией звена (системы) при н.у. называется реакция на единичное ступенчатое воздействие.

На этом месте можно вспомнить, что преобразование Лапласа это интеграл от 0 до бесконечности по времени (см. предыдущий текст), а импульсное воздействие при таком интегрировании превращается в 1 тогда в изображениях получаем что:

Передаточная функция играет роль изображения реакции звена или системы на единичное импульсное воздействие.

Для единичного ступенчатого воздействия преобразование Лапласа тоже известно (см. предыдущий текст):

тогда в изображениях получаем, что реакция системы на ступенчатое воздействие, рассчитывается так:

Реакция системы на единичное ступенчатое воздействие рассчитывается обратным преобразованием Лапласа:

2.11. Определение переходного процесса в системе (САР) (звене) через весовую и переходную функции. Формула Дюамеля-Карсона

Предположим, что на вход системы поступает произвольное воздействие x(t), заранее известное. Найти реакцию системы y(t), если известны входное воздействие x(t) и весовая функция w(t).

Представим, что входное воздействие представляет собой последовательность прямоугольных импульсов до времени t и ступеньки высотой x(t) в момент времени t. см.рис. 2.11 Для каждого импульса мы можем записать реакцию системы через весовую функциию:

где:
— значение отклика по завершению предыущего импульса;
— время завершения текущего импульса;
— значение весовой функции в начале текущего импульса.

Тогда для определения занчения отклика в произвольный момент времени необходимо сложить все импульсы и ступенчатое воздействие в момент времени t:

Переходя к пределам

если перейти от t к бесконечности мы получим формулу интеграла Дюамеля-Карсона, или по другому «интеграла свертки» который обеспечивает вычисление оригинала функции по произвдению изображения двух функций:

где — вспомогательное время

Для вывода аналогичной зависмости от переходной функции вспомним что изображение весовой и переходной функции связаны соотношением: запишем выражение изображения для отклика в операторной форме:

Используя интеграл свертки получаем, что при известной переходной функции (h(t)) и известному входному воздействию х(t) выходное воздействие рассчитывается как:

2.12. Mетод переменных состояния.

До этого мы рассматривали системы с одной передаточной функцией, но жизнь всегда сложнее и как правило в системах есть несколько передаточных функций несколько входных воздейстий и несколько реакций системы. (см. рис. 2.12.1)

В этом случае наиболее удобной формой пердставления систем для их анализа и расчета оказался метод переменных состояния. Для этого метода, вместо передаточных функций связывающих вход с выходом используются дополнительные переменные состояния, которые описывают систему. В этом случае можно говорить, что состояние системы — это та минимальная информация о прошлом, которая необходима для полного описания будущего поведения (т.е. выходов) системы, если поведение ее входов известно. см. рис. 2.12.2

В методе состояний, производные всех переменных состояния, в общем случае зависит от всех переменных и всех входных воздействия, и могут быть записаны в представленной ниже системы обыкновенных дифференциальных уравнений (ОДУ) первой степени. Эта система уравнений называю системой ОДУ в форме Коши:

Выход из системы зависит от переменных состояния и, в общем случае от входных воздействий и описывается следующей системой уравнений:

где:
n — количество перемнных состояния,
m — количество входных воздействий,
p — количество выходных переменных;

Данная система уравнений может быть записана в матричной форме:

где:
— вектор входа (или вектор управления);
— вектор столбец производных переменных состояния;
— вектор столбец переменных состояния;
— вектор выхода;
— собственная матрица системы [n x n],
— постоянные коэффициенты;
— матрица входа [n x m],
— постоянные коэффициенты;
— матрица выхода а [p x n],
— постоянные коэффициенты;
— матрица обхода [p x m],
— постоянные коэффициенты;

В нашем случае почти всегда все элементы матрицы D будут нулевыми: D = 0.

Такое описание системы позволяет с одной стороны стандартным образом описывать различные технические системы. Явная формула для расчета производных позволяет достаточно просто осуществлять численное интегрирование по времени. И это используется в различных программах моделирования

Другое использование данного представления для простых систем, описанных в переменных «вход-выход», зачастую позволяет устранить технические трудности, связанные с решением ОДУ высокой степени.

Еще одним преимуществом данного описания, является то, что уравнения в форме Коши можно получить из законов физики

Пример решения задачи в форме коши.

Рассмотрим задачу моделирования гидравлического привода, при следующих условиях:

Дано:
Цилиндрический плунжер диаметром 10 мм, с приведенной массой 100 кг, работает на пружину жесткостью 200 Н/мм и демпфер с коэффициентом вязкого трения — 1000 Н/(м/с). Полость начальным объемом 20 см 3 соединяется с источником давлния дросселем диаметром диаметр которого 0,2 мм. Коэффициент расхода дросселя 0.62. Плотность рабочей жидкости ρ = 850 кг/м 3 .
Определить:
Перемещение дросселя, если в источнике давление происходит скачек 200 бар. см. рис. 2.12.13

Уравенение движение плунжера:

Где: – площадь плунжера, – жесткость пружины, – коэффициент вязкого трения, p – давление в камере.

Поскольку дифференциальное движения это уравнение второго порядка, превратим его в систему из двух уравнений первого порядка, добавив новую переменную — скорость , тогда

Уравнение давления в камере, для упрощения принимаем что изменениям объема камеры из-за перемещения плунжера можно пренебречь:

Где: Q – расход в камеру, V — объем камеры.

Расход через дроссель:

Где: f– площадь дросселя, – давление в источнике, p – давление в камере.
Уравнение дросселя не линейное, по условию задачи, давление входное изменяется скачком, от 0 до 200 бар, проведем линеаризацию в окрестности точки давления 100 бар тогда:

Подставляем линеаризованную формул расхода в формулу давления:

Таким образом общая система уравнений в форме Коши, для рис 2.12.3 привода принимает вид:

Матрицы A, B, С, В для матричной формы системы уравнений принимают вид:

Проверим моделированием в SimInTech составленную модель. На рисунке 2.12.13 представлена расчетная схема содержащая три модели:
1 — «Честная» модель со всеми уравнениями без упрощений.
2 — Модель в блоке «Переменные состояние» (в матричной форме).
3 — Модель в динамическом блоке с линеаризованным дросселем.

Все условия задачи задаются как глобальные константы проекта, в главном скрипте проекта, там же расчитываются на этапе инициализации расчета, площади плунжера и проходного сечения дросселя см. рис. 2.12.5:

Рисунок 2.12.5 Глобальный скрипт проекта.

Модель на внутреннем языке программирования представлена на рис. 2.12.6. В данной модели используется описание модели в форме Коши. Так же выполняется учет изменения объема дросселя на каждом шаге расчета, за счет перемещения плунжера (Vk = V0+Ap*x.)

Рисунок 2.12.6 Скрипт расчета модели в форме Коши.

Модель в матричном форме задается с использованием глобальных констант в виде формул. (Матрица в SimInTech задается в виде последовательности из ее столбцов) см. рис. 2.12.7

Результаты расчета показывают, что модель в матричной форме и модель на скриптовом языке в форме Коши, практически полностью совпадают, это означает, что учет изменения объема полости практически не влияют на результаты. Кривые 2 и З совпадают.
Процедура линеаризация расхода через дроссель вызывает заметное отличие в результатах. 1-й график c «честной» моделью дросселя, отличается от графиков 2 и 3. (см. рис. 2.12.8)

Сравним полученные модели, с моделью созданной из библиотечных блоков SimInTech, в которых учитываются так же изменение свойств реальной рабочей жидкости — масла АМГ-10. Сама модель представлена на рис. 2.12.9, набор графиков на рисунке 2.12.10

На графиках видно, что уточненная модель отличается от предыдущих, однако погрешность модели составлят наших упрощенных моделей составляют примерно 10%, в лишь в некоторые моменты времени.

2.13. Переход от описания переменных «вход-выход» к переменным состояния и обратно

Рассмотрим несколько вариантов перехода от описания «вход-выход», к переменным состояния:

Вариант прехода зависит от правой части уравнения с переменными «вход-выход»:

2.13.1. Правая часть содержит только b0*u(t)

В этом варианте, в уравнениях в правой части отсутствуют члены с производными входной величины u(t). Пример с плунжером выше так же относится к этому варианту.

Что бы продемонстрировать технологию перехода рассмотрим следующее уровнение:

Для перехода к форме Коши ведем новые переменные:

И перепишем уравнение относительно y»'(t):

Используя эти переменные можно перейти от дифференциального уравнения 3-го прядка, к системе из 3-х уравнений первого порядка в форме Коши:

Соотвественно матрицы для матричного вида уравнений в переменных сосотяния:

2.13.2. Правая часть общего вида

Более сложный случай, когда в уравнениях есть производные от входных воздействий и уравнение в общем случае выглядит так:

Сделаем преобразования: перейдем к уравнениям динамики в изображениях:

Тогда можно представить уравнение в изображениях в виде:

Разделим уравнение в изображениях на произведение полиномов , получим:

Где: — некоторая комплексная величина (отношение двух комплексных величин). Можно считать, что отображение величины . Тогда входная величина может быть в изображениях представлена как:

Вренемся к оригиналу от изображений получим: ,
где: — дифференциальный оператор.

А это дифференциальное уравнение n-го порядка мы можем преобразовать к системе из n дифференциальных уравнений первого порядка, как это мы делали выше:

Таким образом, мы получили систему уравнение в форе Коши, относительно переменных состояния :

А регулируемую величину (выход системы) мы так же можем выразить через эти переменные, в изображениях:

Перейдем от изображения к оригиналам:

Если обозначить вектор , то мы получим уравнения переменных состояниях в матричной форме, где D = 0:

Пример:


Рисунок 2.13.1 Передаточная функция.

Имеется передаточная функция (рис. 2.13.1) в изображениях :

Необходимо преобразовать передаточную функцию к системе уравнений в форме Коши

В изображения реакция системы связана с входным воздействие соотношением:

Разделим в последнем правую и левую часть на произведения , и введем новую перменную :

Полиномы N(s) и L(s) равны:

Перейдем в последнем выражении от изображения к оригиналам и ведем новые переменные (состояния):

Переходим от уравнения третьего порядка к системе трех уравнений первого порядка:

Или в матричной форме:

Для получения второго матричного уравнения воспользуемся соотношением для новых переменных в отображениях:

Перейдем от изображений к оригиналу:

Таким образом второе уравнение матричной системы выглядит так:

Проверим в SimInTech сравнив передаточную функцию и блок переменных состояния, и убедимся, что графики совпадают см. рис. 2.13.2


Рисунок 2.13.2 Сравнение переходного процеса у блока передаточной функции и блока переменных состояния.

Как по передаточной функции определить работоспособность

§ 3.2 Анализ САУ

§ 3.2.1 предмет анализа САУ

САУ предназначенная для управления каким-либо технологическим процессом или агрегатом должна быть работоспособной, а также обладать свойствами удерживающими параметры в таких пределах, чтобы не происходило существенных нарушений технологических процессов или работы агрегата. Работоспособность САУ определяется ее устойчивостью. Устойчивость – способность системы возвращаться в исходное состояние после снятия ограничивающих воздействий на систему. Свойства САУ позволяющие удерживать параметры технологического процесса или работы агрегата в заданных пределах характеризуют качество работы системы.

Конкретные требования к изменению и поведению параметров выдвигаются практикой ведения процесса или работы агрегата, что в принципе является индивидуальным для каждого случая. Существует ряд общих показателей качества работы системы которые позволяют оценить в ней требования к поведению параметров. Такими показателями являются:

1. точность поддержания параметра в установившемся режиме работы системы или при стационарном случае возмущений;

2. быстродействие системы;

3. значение максимальных динамических отклонений в системе под действием возмущений;

Задачи анализа заключаются в определении устойчивости и показателей качества работы системы. Решить такого рода задачи можно 2 способами:

1) экспериментальный метод – качественное исследование системы, но для его реализации необходима аппаратура, которая точно регистрировала изменение параметров. Также необходима в этом случае и сама система;

2) теоретические методы исследования системы основаны на анализе математической модели системы, которая может быть представлена в виде обыкновенных дифференциальных уравнений, уравнений в отклонениях, интегральных уравнениях.

Линейное дифференциальное уравнение с постоянными коэффициентами:

Устойчивость и показатели качества автоматической системы описанной уравнением 3.1 можно оценить, анализируя выходную величину во времени.

§ 3.2.2 Понятие устойчивости. Необходимое условие устойчивости

При приложении к САУ какого-либо ограниченного по значению и времени воздействия в этой системе возникает переходный процесс, который может привести как к новому равновесному состоянию так и к варианту, при котором равновесное состояние не наступит никогда.

Характер такого переходного процесса зависит как от свойств самой системы, так и от вида воздействия, т.е. после воздействия система может обладать различными видами движения.

Условие устойчивости определяет, что таких движений может быть три:

1) движение устойчивой системы;

2) движение неустойчивой системы;

3) нейтральное движение системы, т.е. система, находится на границе устойчивости.

Покажем вид такого движения:

Движение системы после времени можно получить, решив дифференциальное уравнение при условии, что на вход системы подается нулевое воздействие:

Решение дифференциального уравнения 3.2. при нулевых начальных условиях следует искать в следующем виде:

где ; — корни характеристического уравнения

Из курса высшей математики известно, что характер изменения определяется видом корней характеристического уравнения .

Рассмотрим эти варианты:

I. корни характеристического уравнения вещественные, т.е.

При таких корнях решение дифференциального уравнения (3.2.) носит чисто экспоненциальный вид и на основании анализа характера изменения можем записать:

1) при характер движения будет представлять затухающий вид (спадающий), следовательно можно утверждать, что движение устойчивое;

2) при процесс будет расходящимся (накопительное увеличение) и движение можно определить как неустановившееся;

3) при процесс не будет изменять своего значения во времени и можно говорить, что система находится на границе устойчивости.

II. корни комплексные, т.е

Решение дифференциального уравнения (3.2.) в данном случае будет содержать не только экспоненциальную зависимость, но и зависимости синуса в своем выражении, поэтому график свободного движения для рассмотренного варианта корней будет следующим:

Для данного варианта процесс представляет собой затухающие колебания, что характеризует устойчивое движение системы.

Для этого случая характер изменения представляет собой расходящиеся колебания, что определяет процесс как неустойчивый.

Характер свободного движения всей системы при наличии различных корней определяется суммой свободных составляющих формулы (3.3.), причем система бывает устойчивой, если все вещественные корни отрицательные и комплексные корни имеют отрицательную вещественную часть. Если корни нанести на плоскость комплексного переменного, то можно выделить устойчивые, неустойчивые и нейтральные зоны.

Линейная САУ устойчива, если корни характеристического уравнения расположены слева от мнимой оси. Система считается нейтральной, если корни принадлежат мнимой оси.

Неустойчивой система считается для случая, когда корни лежат справа от мнимой оси.

Вышеперечисленные условия устойчивости используются для формулирования необходимого условия устойчивости линейных САУ.

Кроме выше записанного необходимое условие устойчивости можно записать, используя известное в математике выражение:

Подставив в выражение (3.6.) только устойчивые корни характеристического уравнения можно заметить, что после раскрытия скобок в уравнении (3.6.) устойчивой системы все коэффициенты характеристического уравнения будут положительными.

Необходимое условие устойчивости – положительность всех коэффициентов характеристического уравнения. В том случае, если один из коэффициентов отрицателен – линейную систему нельзя считать устойчивой.

Для уравнений первого и второго порядка условие положительности коэффициентов характеристического уравнения является кроме необходимого еще и достаточное условие. Это можно охарактеризовать тем, что уравнения первого и второго порядка просты для нахождения корней. Начиная с третьего и выше порядков характеристические уравнения трудно разрешить в нахождении корней простыми способами вычисления. Поэтому в теории автоматического управления разработаны упрощенные правила – критерии нахождения устойчивости линейных систем.

Существует два вида критериев: алгебраические и частотные. С математической точки зрения все рассматриваемые критерии равнозначны.

§ 3.2.3 Алгебраический критерий устойчивости. Критерий Рауса

Данный критерий устойчивости был разработан в 1878 г . английским математиком Раусом и который был сформулирован в виде некого правила или алгоритма, который можно представить в виде таблицы (матрицы).

Таблица Рауса составляется на основании характеристического уравнения линейной системы вида:

Покажем эту таблицу:

Порядок заполнения таблицы Рауса:

1) в первой строке таблицы Рауса в порядке увеличения индексов записываются коэффициенты характеристического уравнения (3.7), имеющие четный индекс: ;

2) во второй строке записывают в порядке возрастания индексов коэффициенты характеристического уравнения (3.7.) с нечетными индексами: и т.д.

Любой из остальных коэффициентов таблицы Рауса записывается в соответствии со следующими выражениями:

к – столбец, i – строка

Число строк таблицы Рауса равно степени характеристического уравнения + 1 .

Условие устойчивости Рауса: для того, чтобы линейная САУ была устойчивой необходимо и достаточно чтобы коэффициенты первого столбца таблицы Рауса имели один и тот же знак, т.е. при должны быть положительными.

§ 3.2.4 Алгебраический критерий устойчивости. Критерий Гурвица

В 1895 г . немецкий математик Гурвиц разработал алгебраический критерий устойчивости в форме определителей, состоящих из коэффициентов характеристического уравнения (3.7).

В основе рассматриваемого критерия лежит построение главного определителя Гурвица из коэффициентов характеристического уравнения (3.7).

Порядок составления главного определителя Гурвица:

1. Записываем главную диагональ определителя Гурвица, составленную из коэффициентов характеристического уравнения от до ;

2. Вверх от главной диагонали записывают столбцы, составленные из коэффициентов характеристического уравнения с последовательно возрастающими индексами;

3. Вниз от главной диагонали записываем столбцы составленные из коэффициентов характеристического уравнения с последовательно убывающими индексами;

4. Оставшиеся пустые места определителя заполняются нулями, т.е. нули проставляются на места, где должны быть коэффициенты с индексами больше 0 и меньше .

Главный определитель Гурвица имеет вид:

После построения главного определителя Гурвица, в нем очеркиваются диагональные миноры и тем самым получаются определители более низших порядков.

Критерий устойчивости Гурвица: для того, чтобы система автоматического управления (САУ) была устойчивой необходимо и достаточно, чтобы все определители Гурвица (3.11) имели знаки одинаковые со знаком первого коэффициента характеристического уравнения , т.е. при все определители должны быть положительными:

В случае, если хоть одно из условий не выполняется, то систему считают неустойчивой.

Раскрывая все определители Гурвица можно для уравнений 1-го, 2-го, 3-го и 4-го порядков записать более простую форму критерия устойчивости. Такая форма записи получила название следствия из критерия Гурвица или ее называют критерием Леера-Шепорда.

1) Для характеристического уравнения 1-го порядка:

необходимым и достаточным является, чтобы:

2) Для характеристического уравнения 2-го порядка:

необходимым и достаточным является, чтобы:

3) Для характеристического уравнения 3-го порядка:

необходимым и достаточным является, чтобы:

4) Для характеристического уравнения 4-го порядка:

необходимым и достаточным является, чтобы:

§ 3.2.5 Частотный критерий устойчивости. Критерий Михайлова

Все частотные критерии, в том числе и критерий Михайлова, основаны на хорошо известном из курса высшей математики «Принципа аргумента», который позволяет отобразить необходимое условие устойчивости на частотной плоскости.

Все элементарные вектора изображаются на комплексной плоскости. Задаваясь изменением частоты от до будем наблюдать поворот единичных векторов. Анализ их изменения показывает, что устойчивые вектора поворачиваются отлично от неустойчивых. Такое наблюдение позволило сделать четкий вывод о значении угла поворота устойчивой системы в зависимости от числа правых и левых корней (левыми считаются устойчивые корни, а правыми – неустойчивые корни).

Этот частотный критерий устойчивости был сформулирован в 1938 г . советским ученым Михайловым и является интерпретацией принципа аргумента, позволяя судить об устойчивости системы наблюдая за поведением кривой называемой кривой Михайлова.

За основание построения кривой берется характеристический полином вида:

Произведя замену получим характеристический полином Михайлова:

При изменении частоты вектор будет изменяться как по величине, так и по направлению, описывая своим окончанием некоторую кривую, называемую кривой Михайлова или годографом Михайлова.

Для устойчивых систем кривая Михайлова начинаясь при на вещественной положительной полуоси, при увеличении частоты , описывает относительно начала координат некую линию.

Критерий Михайлова: для того, чтобы САУ была устойчивой, необходимо и достаточно, чтобы кривая или годограф Михайлова при изменении начинаясь при на вещественной полуоси, обходила только против часовой стрелки последовательно n -квадрантов комплексной плоскости, нигде не обращаясь в нуль ( n – степень характеристического полинома (уравнения)).

Устойчивые САУ:

Неустойчивые САУ:

Нейтральные САУ (граница устойчивости):

Анализируя кривую Михайлова можно вывести следствие из него: при прохождении кривой Михайлова числа квадрантов комплексной плоскости, происходит последовательное поочередное пересечение действительной и мнимой соей, т.е.:

Значение частот при которых происходит пересечение кривой с вещественной или мнимой осью, должны является корнями уравнений (3.20) и (3.21), причем корни уравнения (3.21), а — корни уравнения (3.20). При этом корень с большим индексом по значению, также больше корня с меньшим индексом, то обязательно должно выполняться следующее неравенство:

В связи с выше записанным следствие кривой Михайлова можно сформулировать следующим образом: САУ будет устойчивой тогда и только тогда, когда вещественная и мнимая функции Михайлова приравненные к нулю, имеют все действительные и перемеживающиеся корни, причем общее число корней равно n и при выполняется следующее условие:

Для реализации этого следствия определяются только корни уравнения . Перемежаемость корней можно проверить подставив в найденные корни . Знаки значений при подстановке возрастающих по значению корней должны чередоваться (+ — + — + и т.д.). Если что-то не так – система является неустойчивой.

§ 3.2.6 Частотный критерий. Критерий Найквиста

Этот критерий разработан в 1923 г . американским ученым Найквистом. Он позволяет судить об устойчивости замкнутой системы по поведению АФЧХ разомкнутой системы.

Вектор разомкнутой системы при изменении частоты от до меняется по величине и фазе.

Кривая, описываемая окончанием этого вектора есть АФЧХ разомкнутой системы, причем следует отметить, что вид этой характеристики симметричен относительно начала координат, т.е.

Для доказательства критерия Найквиста используют дополнительную функцию вида:

Причем в знаменателе такой функции будет записан характеристический полином разомкнутой системы, а в числителе характеристический полином замкнутой системы:

В случае замены оператора Лапласа р на , получим частотную функцию вида:

Пусть характеристическое уравнение замкнутой системы имеет — правых корней и — левых корней, а характеристическое уравнение разомкнутой системы имеет правых и левых корней (под правыми корнями подразумевают корни лежащие справа от мнимой оси комплексной плоскости и определяющие неустойчивость функционирования системы).

При рассмотрении этого критерия так же работает принцип аргумента, который определяет, что устойчивой система является, когда вектор повернется на соответствующий угол.

Разомкнутая система являющееся неустойчивой и имеющая правых корней будет определять, что замкнутая система устойчивая тогда и только тогда, когда АФЧХ вспомогательной функции при изменении частоты от до охватывает начало координат в положительном направлении — раз.

Найквистом было отмечено, что движение вектора вокруг начала координат равно числу оборотов вектора вокруг точки с координатами .

Критерий устойчивости Найквиста: если разомкнутая система автоматического управления неустойчива, то для того чтобы замкнутая система была устойчивой необходимо и достаточно, чтобы АФЧХ разомкнутой системы при изменении частоты от до охватывала точку с координатами в положительном направлении — раз (где число правых корней характеристического уравнения разомкнутой системы).

При сложной форме характеристик может возникнуть затруднение при определении числа оборотов вокруг критической точки с координатами .

Для анализа поведения таких характеристик применяют «правило переходов» Ципкина. Назовем переход АФЧХ через действительную ось слева от точки при возрастании положительным (если характеристика пересекает вещественную ось сверху-вниз), а справа от точки отрицательным. Также отрицательным считается переход слева от точки , но совершённым при пересечении вещественной оси снизу-вверх. В этом случае, если АФЧХ начинается на отрезке при или заканчивается на нем при , считается, что АФЧХ совершила пол перехода.

Критерий Найквиста для рассматриваемого варианта: если разомкнутая САУ неустойчива, то для того чтобы замкнутая система стала устойчива необходимо и достаточно, чтобы разность между положительным и отрицательным переходами АФЧХ разомкнутой системы через отрезок вещественной оси при изменении от до была равна — раз.

Критерий Найквиста для случая, когда разомкнутая система устойчива имеет следующую формулировку: если САУ разомкнутая устойчива, то замкнутая система будет устойчивой, если АФЧХ разомкнутой системы не охватывает точку с координатами .

Достоинство критерия Найквиста заключается в том, что его можно использовать даже если неизвестны структуры отдельных звеньев системы, достаточно получить АФЧХ. Кроме того, рассматриваемый критерий позволяет анализировать устойчивость систем обладающих запаздыванием.

§ 3.2.7. Частотный критерий устойчивости – логарифмический частотный критерий

Критерий Найквиста позволяет судить от устойчивости системы по логарифмическим частотным характеристикам, т.е. можно заметить, что критерий Найквиста можно анализировать используя простые с точки зрения построения логарифмические частотные характеристики. Поэтому рассматриваемый критерий часто называют критерием Найквиста в логарифмической форме.

Передаточная функция разомкнутой системы обычно представляет собой произведение элементарных динамических звеньев, асимптотические характеристики которых представляют собой ломаные прямые линии.

Устойчивость с использованием логарифмического критерия позволяет построив совмещено ЛАЧХ и ЛФЧХ разомкнутой системы судить об устойчивости замкнутой системы.

Замкнутая система автоматического управления устойчива, если при соответствующая ЛФЧХ проходит таким образом, что фаза не превосходит значения .

1) система устойчивая в разомкнутом состоянии будет устойчивой и в замкнутом, если точка А ЛФЧХ определяемая фазой соответствует области отрицательных значений логарифмической амплитуды ;

2) САУ неустойчивая в разомкнутом состоянии будет устойчива в замкнутой, если при изменении от 0 до разность чисел положительных и отрицательных переходов ЛФЧХ через значение лежащих в области положительных равна половине числа корней , где — число правых корней характеристического уравнения разомкнутой системы.

Следствие к первому случаю: САУ будет устойчивая в замкнутом состоянии, если ЛФЧХ неустойчивой разомкнутой системы при будет проходить через ординату -180º одинаковое число раз как в положительном, так и отрицательном направлениях.

§ 3.2.8. Запасы устойчивости

При проектировании систем автоматики стремятся обеспечить их устойчивость с некоторой гарантией, чтобы изменение параметров системы в процессе ее работы не могли привести к неустойчивости системы. Для реализации такого тезиса необходимо, чтобы система обладала определенным запасом устойчивости. Запас устойчивости определяет удаленность параметров системы от границы устойчивости.

Положение системы на границе устойчивости можно определить, используя критерий устойчивости. Качественную характеристику удаления системы от границы устойчивости дают критерии Гурвица и Михайлова. Четкую количественную характеристику запаса устойчивости как по амплитуде, так и по фазе дает критерий Найквиста и логарифмический критерий.

В соответствии с критерием Найквиста система находится на границе устойчивости, если годограф Найквиста проходит через точку с координатами . Такая граница носит название колебательной границы устойчивости. В логарифмических координатах такое действие может произойти, если частота среза совпадает с точкой пересечения ЛФЧХ значения — 180º.

Покажем использование критерия Найквиста для нахождения запаса устойчивости по фазе и амплитуде:

Запас устойчивости по модулю может быть в данном случае рассчитан как:

Значение модуля АФЧХ разомкнутой системы при зависит от значения коэффициента усиления (передачи). Поэтому часто запас устойчивости по модулю называют запасом по усилению и определяют как отношение предельного коэффициента передачи к текущему:

где — значение коэффициента, при котором модуль частотной передаточной функции разомкнутой системы равен единице и система находится на границе устойчивости. В том случае если , то система уходит за пределы устойчивости.

Запас устойчивости по фазе измеряется по дуге окружности единичного радиуса между отрицательной частью и ближайшей точкой пересечения окружности с годографом Найквиста.

Определение устойчивости по логарифмическим частотным характеристикам может быть осуществлено достаточно простым способом. Необходимо на совмещенных логарифмических частотных характеристиках построить вертикальные проекции между осью абсцисс и значением -180º которые проведены через точки и А. В результате чего получим:

— запас по амплитуде.

Запасы устойчивости влияют не только на работоспособность (устойчивость) системы, но также характеризуют качество работы системы. В реальных системах обычно = 15…20 дБ, = 30…50º.

§ 3.2.9. Устойчивость систем обладающих запаздыванием

Значительное число объектов сельскохозяйственного назначения описываются математической моделью, в состав которой входит звено транспортного запаздывания, при этом общая передаточная функция такой системы состоит из произведения передаточной функции линейной части системы и передаточной функции звена транспортного запаздывания

Частотная передаточная функция в данном случае может быть записана в виде:

где — АЧХ линейной части;

— ФЧХ системы с учетом звена транспортного запаздывания.

Звено чистого запаздывания не изменяет амплитуду АФЧХ, но создает дополнительный отрицательный сдвиг по фазе, зависящий от частоты . Устойчивость САУ с запаздыванием наиболее просто определить по критерию Найквиста, при этом АФЧХ такой системы строится следующим образом: сначала строят годограф , а затем каждую i -тую точку годографа доворачивают на угол по часовой стрелке.

Оценку устойчивости систем с запаздыванием можно также выполнить используя логарифмический частотный критерий.

Очень часто анализируя устойчивость рассмотренных систем необходимо бывает установить значение запаздывания при котором система находится на границе устойчивости. Такое время носит название критического времени запаздывания и оно определяется из следующего выражения:

§ 3.3. Качества работы САУ

§ 3.3.1. Общие положения о качестве работы

Факт устойчивости или неустойчивости САУ говорит лишь о том, что переходная или свободная составляющая процесса регулирования с течением времени расходится или затухает, но такой анализ не дает ответа на такие важные вопросы как: быстрота затухания переходного процесса, форма кривой процесса регулирования и т.д. Поэтому следует отметить, что теория устойчивости является необходимым, но не достаточным условием практической пригодности САУ. Любая такая система кроме устойчивости должна еще обладать и требуемым качеством работы. Качество работы систем автоматики характеризует точность ее работы как в установившемся так и переходном режимах. Иными словами можно отметить, что качество работы системы автоматики характеризует точность воспроизведения системой задающего воздействия.

Проблема качества систем автоматики может быть поставлена как задача анализа, т.е. оценка уже спроектированной САУ или как задача синтеза, т.е. проектирование САУ заранее оговоренными показателями качества. При рассмотрении таких задач будем полагать, что САУ описывается системой дифференциальных уравнений с постоянными коэффициентами. При изменении воздействия на входе системы выходную величину можно записать:

где — решение дифференциального уравнения, описывающего движение САУ;

— общее решение, соответствующее однородному дифференциальному уравнению. В случае отсутствия кратных корней зависит от вида корней характеристического уравнения;

— вынужденная или установившаяся составляющая переходного процесса, обуславливаемая законом изменения .

Качество работы системы автоматики можно оценить по виду переходного процесса и по его составляющим и . В связи с чем различают две группы показателей качества:

1) показатели качества переходного процесса ;

2) показатели качества, характеризующие вынужденную составляющую и определяющие точность воспроизведения предписанной величины.

Показатели качества, определяемые непосредственно по кривой переходного процесса называют прямыми оценками качества, косвенные оценки качества не требуют нахождение кривой переходного процесса. Косвенные методы разделяют на: корневые, интегральные и частотные.

§ 3.3.2. Оценка качества регулирования при гармонических воздействиях

При гармонических воздействиях качество системы принято оценивать по амплитудо-фазовой, амплитудо-частотной и логарифмическим частотным характеристикам.

Для оценки качества переходных процессов системы можно использовать следующие величины: показатель колебательности М, резонансная (собственная частота) , полоса пропускания системы , частота среза , запасы устойчивости по модулю и по фазе.

Показатель колебательности М – это отношение максимального значения АЧХ замкнутой системы к ее значению при

Показатель колебательности характеризует склонность системы к колебаниям. Чем выше М, тем менее качественная система при прочих равных условиях.

Частоту , при которой АЧХ замкнутой системы имеет максимум, называют резонансной частотой системы, т.е. на этой частоте гармонические колебания проходят через систему с наименьшим усилием.

Полоса пропускания системы – это интервал частот от до , при котором выполняется условие:

или при величина . Полоса пропускания не должна быть слишком широкой, иначе система будет воспроизводить высокочастотные помехи.

Частота среза — частота, при которой АЧХ системы принимает значение равное 1, т.е. . Эта частота косвенно характеризует длительность переходного процесса. Чем меньше частота среза, тем хуже быстродействие системы

если переходный процесс имеет одно-два колебания, то время достижения переходной характеристикой первого максимума

Склонность системы к колебаниям характеризуется величинами ее запасов устойчивости по модулю и по фазе. Запасы устойчивости рассчитывают по АФЧХ и ЛЧХ. В хорошо демпфированных системах запас устойчивости по амплитуде колеблется в пределах от 6 до 20 дБ, а запас по фазе – от 30 до 60º.

Т.к. рассмотренные выше показатели косвенно определяют быстродействие, перерегулирование и т.п., то они могут быть использованы и для расчета систем, находящихся под воздействием непериодических возмущений.

Решение задач по ТАУ

ТАУ задачи с решением

На этой странице я собрала теорию и практику, готовые задачи и подробные решения по предмету теория автоматического управления, чтобы вы смогли освежить знания.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

ТАУ

Теория автоматического управления (ТАУ) является одной из немногих общепрофессиональных технических дисциплин, входящих под тем или иным названием во все программы инженерного образования. Основой ТАУ являются различные по идеям и методам исследования разделы высшей математики и физики, такие как дифференциальное и интегральное исчисление, теория функций комплексного переменного, теория матриц, теория оптимальных процессов, математическая логика, теория вероятности и случайные процессы, механика, электричество и магнетизм и др.

Математическое описание систем управления. Уравнения и передаточные функции

Система или звено с одним выходом Решение задач по ТАУи двумя входами Решение задач по ТАУи Решение задач по ТАУв общем случае описывается уравнением

Решение задач по ТАУ

Решение задач по ТАУ

где Решение задач по ТАУобозначает оператор дифференцирования Решение задач по ТАУ,

Решение задач по ТАУ

Дифференциальный оператор Решение задач по ТАУпри выходной переменной называется собственным оператором, а дифференциальные операторы Решение задач по ТАУи Решение задач по ТАУпри входных переменных Решение задач по ТАУи Решение задач по ТАУ— операторами воздействия. Отношение оператора воздействия к собственному оператору называется передаточной функцией в операторной форме.

Степень полинома знаменателя передаточной функции называют порядком, а разность между ее степенями знаменателя и числителя — относительным порядком или относительной степенью передаточной функции и соответствующей ей системы.

Нулями и полюсами передаточной функции

Решение задач по ТАУ

называют нули ее числителя и знаменателя соответственно, т. е. корни уравнений Решение задач по ТАУи Решение задач по ТАУ, где Решение задач по ТАУрассматривается как переменная, а не как оператор.

Система (1.1) определяется двумя передаточными функциями: передаточной функцией

Решение задач по ТАУ

Решение задач по ТАУ

относительно входа и передаточной функцией

Решение задач по ТАУ

относительно входа Решение задач по ТАУ. Порядок этих передаточных функций равен Решение задач по ТАУ, а относительный порядок — Решение задач по ТАУдля передаточной функции Решение задач по ТАУи Решение задач по ТАУдля передаточной функции Решение задач по ТАУ.

С помощью передаточной функции уравнение рассматриваемой системы управления можно записать в виде

Решение задач по ТАУ

Имеющее наименьший порядок отношение изображений Лапласа выходной и входной переменных, вычисленных при нулевых начальных условиях, называется передаточной функцией в изображениях Лапласа. В соответствии с определением передаточная функция в изображениях Лапласа не может иметь равные между собой нули и полюса, так как в этом случае ее порядок может быть понижен путем сокращения числителя и знаменателя на общий множитель.

Передаточная функция системы управления в изображениях Лапласа Решение задач по ТАУможет быть определена по ее передаточной функции в операторной форме Решение задач по ТАУследующим образом:

Решение задач по ТАУ

Если передаточная функция Решение задач по ТАУсодержит одинаковые нули и полюса, то элементарные множители, соответствующие этим корням в числителе и знаменателе, после подстановки Решение задач по ТАУдолжны быть сокращены.

Возможно эта страница вам будет полезна:

Задача №1.1.

Определить передаточные функции звеньев, описываемых уравнениями:

Решение задач по ТАУ

Решение:

В символической форме эти уравнения записываются в виде

Решение задач по ТАУ

а их передаточные функции в операторной форме соответственно равны

Решение задач по ТАУ

Передаточные функции в изображениях Лапласа имеют вид

Решение задач по ТАУ

Как видим, передаточные функции в изображениях Лапласа рассматриваемых звеньев совпадают, хотя они описываются разными дифференциальными уравнениями и общие решения однородных уравнений, описывающие свободные движения систем, отличаются между собой.

Временные функции

Переходной функцией системы (звена) называют функцию, описывающую реакцию системы на единичное ступенчатое воздействие при нулевых начальных условиях. Переходную функцию обозначают Решение задач по ТАУ. График переходной функции — кривую зависимости Решение задач по ТАУот времени Решение задач по ТАУ— называют переходной или разгонной характеристикой.

Решение задач по ТАУ

Импульсной переходной или весовой функцией (функцией веса) называют функцию, описывающую реакцию системы (звена) на единичное импульсное воздействие при нулевых начальных условиях. Весовую функцию обозначают . График импульсной переходной функции называют импульсной переходной характеристикой. Переходную и импульсную переходную функции называют временными функциями, а их графики — временными характеристиками.

Передаточная функция в изображениях Лапласа есть преобразование Лапласа от весовой функции:

Решение задач по ТАУ

Весовая функция равна производной от переходной функции:

Решение задач по ТАУ

Если изображение временной функции Решение задач по ТАУимеет вид Решение задач по ТАУРешение задач по ТАУ, где Решение задач по ТАУи Решение задач по ТАУ— полиномы, и степень Решение задач по ТАУполинома Решение задач по ТАУбольше степени m полинома Решение задач по ТАУ, то

Решение задач по ТАУ

если нули Решение задач по ТАУполинома Решение задач по ТАУ— простые. Если какой-либо полюс Решение задач по ТАУимеет кратность Решение задач по ТАУ, то ему соответствует слагаемое

Решение задач по ТАУ

Задача №1.2.

Определить переходную и весовую функции колебательного звена, т. е. звена с передаточной функцией

Решение задач по ТАУ

Решение:

Дифференциальное уравнение имеет вид

Решение задач по ТАУ

Решение задач по ТАУ

Для определения переходной функции нужно решить это уравнение при входном воздействии и нулевых начальных условиях:

Решение задач по ТАУ

Характеристическое уравнение имеет вид

Решение задач по ТАУ

и его корнями являются

Решение задач по ТАУ

Решение задач по ТАУ

Решение задач по ТАУ

общее решение однородного дифференциального уравнения можно записать в виде

Решение задач по ТАУ

Решение задач по ТАУ

Частное решение неоднородного уравнения . Поэтому общее решение неоднородного уравнения

Решение задач по ТАУ

Производная от этого решения

Решение задач по ТАУ

Начальные условия принимают вид

Решение задач по ТАУ

Решение задач по ТАУ

Поэтому для переходной и весовой функций имеем

Решение задач по ТАУ

или, после элементарных преобразований

Решение задач по ТАУ

Решение задач по ТАУ

Задача №1.3.

Определить переходную и весовую функции звена с передаточной функцией

Решение задач по ТАУ

Решение:

Передаточная функция Решение задач по ТАУявляется изображением Лапласа весовой функции Решение задач по ТАУ. Полюса передаточной функции Решение задач по ТАУявляются простыми, и весовую функцию Решение задач по ТАУможно определить по формуле (1.2). В данном случае Решение задач по ТАУ Решение задач по ТАУи для весовой функции в соответствии с формулой (1.2) получаем

Решение задач по ТАУ

Решение задач по ТАУ

Так как то для изображения переходной функции имеем

Решение задач по ТАУ

В этом случае полюс Решение задач по ТАУимеет кратность Решение задач по ТАУ, а полюс Решение задач по ТАУ— простой. Поэтому слагаемое, соответствующее полюсу Решение задач по ТАУ, найдем по формуле (1.3), а слагаемое, соответствующее полюсу Решение задач по ТАУ, — по формуле (1.2). Согласно формуле (1.3) имеем

Решение задач по ТАУ

Решение задач по ТАУ

Решение задач по ТАУ

для слагаемого, соответствующего полюсу , имеем (см. (1.2))

Решение задач по ТАУ

Таким образом, переходная функция имеет вид

Решение задач по ТАУ

Частотные функции и характеристики

Функцию Решение задач по ТАУ, которая получается из передаточной функции в изображениях Лапласа Решение задач по ТАУпри подстановке Решение задач по ТАУ, называют частотной передаточной функцией. Она является комплекснозначной функцией от действительной переменной Решение задач по ТАУназываемой частотой. Частотную передаточную функцию можно представить в виде

Решение задач по ТАУ

Решение задач по ТАУ

Ha комплексной плоскости частотная передаточная функция Решение задач по ТАУопределяет вектор Решение задач по ТАУ(рис. 1.1), длина которого равна Решение задач по ТАУ, а аргумент — углу Решение задач по ТАУ, образованному этим вектором с положительной действительной полуосью. Кривую, описываемую концом вектора Решение задач по ТАУпри изменении частоты от 0 до Решение задач по ТАУили от — Решение задач по ТАУдо Решение задач по ТАУ, называют амплитудно-фазовой частотной характеристикой (АФЧХ).

Решение задач по ТАУ

АФЧХ, получаемую при изменении частоты от — Решение задач по ТАУдо Решение задач по ТАУ, называют также диаграммой Найквиста. Модуль Решение задач по ТАУназывают амплитудной частотной функцией, ее график — амплитудной частотной характеристикой. Аргумент Решение задач по ТАУназывают фазовой частотной функцией, а его график (при изменении Решение задач по ТАУот 0 до Решение задач по ТАУ) — фазовой частотной характеристикой.

Частотную передаточную функцию Решение задач по ТАУназывают также амплитудно-фазовой частотной функцией. Ее действительную Решение задач по ТАУи мнимую Решение задач по ТАУчасти называют соответственно вещественной и мнимой частотной функцией, а их графики — кривые зависимостей Решение задач по ТАУ— вещественной и мнимой частотной характеристикой соответственно.

Кроме перечисленных частотных характеристик имеются логарифмические частотные характеристики (ЛЧХ): логарифмические амплитудные частотные характеристики (ЛАЧX) и логарифмические фазовые частотные характеристики (ЛФЧХ).

Решение задач по ТАУ

называют логарифмической амплитудной частотной функцией, а график зависимости функции Решение задач по ТАУот логарифма частоты Решение задач по ТАУ— логарифмической амплитудной частотной характеристикой (ЛАЧХ).

При построении ЛАЧХ по оси абсцисс откладывают значение частоты в логарифмическом масштабе и при этом на отметке, соответствующей значению Решение задач по ТАУ, записывают значение Решение задач по ТАУ; по оси ординат откладывают и записывают значение Решение задач по ТАУ.

Логарифмической фазовой частотной характеристикой (ЛФЧХ) называют график зависимости функции Решение задач по ТАУот логарифма частоты Решение задач по ТАУ. При ее построении по оси абсцисс, как и при построении ЛАЧХ, на отметке, соответствующей значению Решение задач по ТАУ, записывают значение Решение задач по ТАУ.

В ЛЧХ единицей функции Решение задач по ТАУявляется децибел, а единицей Решение задач по ТАУ— декада. Декадой называют интервал, на котором частота изменяется в 10 раз. При изменении частоты в 10 раз говорят, что частота изменилась на одну декаду.

Решение задач по ТАУ

Определенные трудности представляет вычисление фазовой частотной функции. Если эта функция по модулю не превышает , то она определяется по формуле

Решение задач по ТАУ

В общем случае нужно разложить числитель и знаменатель передаточной функции на элементарные множители и определять фазовую частотную функцию по правилу вычисления аргумента произведения и частного комплексных чисел.

Правило вычисления модуля и аргумента. При вычислении амплитудной и фазовой частотной функций полезно следующее правило вычисления модуля и аргумента произведения и частного комплексных чисел (функций).

Решение задач по ТАУ

1) Модуль произведения комплексных чисел равен произведению модулей сомножителей:

Решение задач по ТАУ

а аргумент — сумме аргументов сомножителей:

Решение задач по ТАУ

Решение задач по ТАУ

2) Модуль частного комплексных чисел (функций) равен отношению модулей

Решение задач по ТАУ

а аргумент — разности аргументов числителя и знаменателя:

Решение задач по ТАУ

Элементарные звенья и их характеристики. Так как произвольный полином можно разложить на простые множители, то передаточную функцию системы (звена)

Решение задач по ТАУ

всегда можно представить в виде произведения простых множителей и дробей вида

Решение задач по ТАУ

Здесь Решение задач по ТАУназывается передаточным коэффициентом, Решение задач по ТАУ— постоянной времени и Решение задач по ТАУ— коэффициентом демпфирования.

Звенья, передаточные функции которых имеют вид простых множителей или дробей, называют элементарными звеньями. Их также называют типовыми.

Системы и звенья и их передаточные функции делятся на минимально-фазовые и неминимально-фазовые. Передаточная функция Решение задач по ТАУназывается минимально-фазовой, если все ее нули (корни уравнения Решение задач по ТАУ) и полюса (корни уравнения Решение задач по ТАУ) располагаются в левой полуплоскости, и неминимально-фазовой, если хотя бы один нуль или полюс располагается в правой полуплоскости.

Система и звено называются минимально-фазовыми, если их передаточные функции являются минимально-фазовыми, и неминимально-фазовыми, если их передаточные функции являются неминимально-фазовыми.

Передаточные функции системы, не являющиеся ни минимально-фазовыми и ни неминимально-фазовыми, иногда называют нейтральными или маргинальными. Иначе говоря, передаточная функция называется маргинальной, если она имеет нуль или полюс на мнимой оси, но не имеет их в правой полуплоскости.

Решение задач по ТАУ

Тип звена определяется видом его передаточной функции. При этом если передаточные функции звеньев отличаются только на постоянный множитель, то их относят к одному и тому же типу. Поэтому при определении типа элементарных звеньев будем исходить из передаточных функций, получаемых из (1.4) умножением на константу (кроме первой).

Звено с передаточной функцией Решение задач по ТАУназывается пропорциональным звеном, звено с передаточной функцией Решение задач по ТАУ— дифференцирующим звеном, звено с передаточной функцией Решение задач по ТАУ Решение задач по ТАУ— интегрирующим звеном, звено с передаточной функцией Решение задач по ТАУ— форсирующим звеном (первого порядка), звено с передаточной функцией Решение задач по ТАУ— апериодическим звеном, звено с передаточной функцией — Решение задач по ТАУ Решение задач по ТАУ— форсирующим звеном второго порядка, звено с передаточной функцией Решение задач по ТАУ— колебательным звеном.

Фазовые частотные функции минимально-фазовых и нейтральных звеньев с передаточными функциями, представляющими элементарный множитель первого порядка, по модулю не превышают Решение задач по ТАУи определяются по формуле Решение задач по ТАУ. В случае форсирующего звена второго порядка фазовая функция определяется по формуле Решение задач по ТАУпри частотах Решение задач по ТАУ, а при Решение задач по ТАУ— по формуле

Решение задач по ТАУ

Решение задач по ТАУ

Физический смысл частотных характеристик. При гармоническом входном воздействии в устойчивых системах после окончания переходного процесса выходная переменная также изменяется по гармоническому закону с той же частотой, но с другими амплитудой и фазой; амплитуда равна амплитуде входного сигнала, умноженной на модуль частотной передаточной функции, а сдвиг фазы — ее аргументу. Поэтому если система с передаточной функцией устойчива, то при входном воздействии

Решение задач по ТАУ

после окончания переходного процесса выходной сигнал

Решение задач по ТАУ

Здесь Решение задач по ТАУ— постоянная амплитуда входного сигнала, Решение задач по ТАУ— начальный сдвиг фазы, Решение задач по ТАУ— частотная передаточная функция рассматриваемой системы,

Решение задач по ТАУ

Задача №1.4.

Решение задач по ТАУ

На вход системы подается сигнал Определить в установившемся режиме реакцию системы с передаточной функцией

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *