Что такое датчик барометрического давления
Перейти к содержимому

Что такое датчик барометрического давления

  • автор:

Датчики барометрического давления и абсолютного давления во впускном коллекторе

Датчики барометрического давления используются в системах управления двигателем при определе­нии массы топлива по объемному расходу воздуха. Этот способ оказывается намного проще и дешевле в реали­зации, если сравнивать с непосредственным измерением массового расхода воздуха, но точность резко снижается. Датчики барометрического давления могут использоваться только для диагностики в бортовых диа­гностических системах второго поколения OBD-II.

Датчики барометрического (атмосферного) давления нужны для адаптации электронных блоков управления к перепадам высоты и изменениям погоды. Они могут применяться совместно с расходомером воздуха по объему. Скорее всего это один и тот же датчик, тогда измерение атмосферного давления производится, когда зажигание включено, а двигатель еще не работает. При езде в горных местах иногда приходится специально останавливаться для того, чтобы перезапустить двигатель, что позволит адаптировать систему управления подачей топлива к новой высоте.

Выпускаются и сдвоенные датчики (рис). Вход барометрического датчика остается открытым и на него подается атмосферное давление, вход датчика разре­жения соединяется вакуумным шлангом с впускным коллектором.

Рис. 2.2. Комбинированный датчик барометрического давления и разрежения:


Рис. 2.3. Современный интегральный датчик давления в защитном корпусе

Барометрические датчики и датчики давления, применяемые для измерения разрежения во впускном трубопроводе, могут быть различных конструкций. Дат­чики давления дискретного действия представляют собой устройство, где замыка­ние и размыкание контактов происходят под действием упругой мембраны, испы­тывающей измеряемое давление.

Датчики давления непрерывного действия представляют собой либо потенцио­метр, ползунок которого связан с мембраной, либо катушку индуктивности, в ко­торую мембрана под действием давления вдвигает магнитный сердечник.

Современные интегральные датчики (рис.) подключаются к микропроцессо­ру ЭБУ через коммутатор и аналого-цифровой преобразователь (АЦП). Для 8-раз­рядного контроллера шаг дискретизации может составлять до 4 мс, для 16-разряд­ного — до 2 мс.

Погрешность датчика абсолютного давления во впускном коллекторе обычно около 1%.

Датчик барометрического давления работает в диапазоне 60. 115 кПа, имеет погрешность около 1,5%. По краям рабочего диапазона, как по температуре, так и по давлению, погрешность растет.

Рис. 2.4. Упрощенная электрическая схема датчика абсолютного атмосферного давления с цепями компенсации: (А — цепь температурной компенсации, Визмерительный мост, С — подстройка нуля, D — коэффициент усиления, Етермокомпенсация усилителя).

Датчики абсолютного давления в двига­телях с наддувом работают в диапазоне дав­лений 20. 200 кПа.

Рассмотренные датчики имеют, как пра­вило, интегральное исполнение и крепятся к стенкам соответствующих трубопроводов.

Широкое распространение получили полупроводниковые датчики с преобразо­вателем давления на кремниевом кристал­ле, в работе которого используется пьезорезистивный эффект (рис. 2.4, 2.5). На повер­хности кристалла сформирован мостик сопротивлений, ток через которые изменя­ется под действием деформации. Затем ток усиливается и вводится температурная ком­пенсация. Эти датчики отличаются неболь­шими размерами и высокой надежностью. Интегральные датчики очень технологич­ны, их выходной сигнал унифицирован для подключения к аналоговым или импуль­сным входам микроконтроллера.

Информацию о давлении в зависимости от конструкции датчика несет величина выходного напряжения или его частота.

Барометр в телефоне и смарт-часах для «чайников». Как он работает и для чего нужен?

Если вы не особо увлекаетесь физикой, эта статья должна вас немного поразвлечь, так как обычно человек даже не задумывается о таких на первый взгляд «очевидных» вещах.

Я попытаюсь на пальцах объяснить, как работает датчик давления (он же — барометр), используемый в современных смартфонах и смарт-часах. Но прежде, чем говорить об этом, нам нужно понять, для чего вообще он нужен и что конкретно измеряет.

Да, каждый взрослый человек слышал словосочетание атмосферное давление. И все знают, что это давление может повышаться или понижаться. Многие даже знают, что когда давление падает, стоит ждать ухудшения погоды. А если падает очень быстро — скорее всего, будет очень сильный ветер. Всё это — банальные вещи, хотя и они требуют объяснений.

Но что, если я скажу вам, что именно благодаря атмосферному давлению вы можете попивать апельсиновый фреш через трубочку? Как иначе сок может преодолеть силу тяжести и направиться вверх? Ведь не существует никакой «силы всасывания» или «силы вакуума». Если бы вы смогли попробовать попить сок через трубочку в космосе, где нет атмосферного давления, вам бы не удалось этого сделать.

Или подумайте, почему, когда вы втягиваете ртом воздух из пластиковой бутылки, она сжимается? Кто или что сжимает бутылку? Однозначно, это не воздух, который вы втягиваете.

В общем, давайте разбираться с мобильным барометром и давлением, которое он измеряет. Я хочу, чтобы вы хорошо понимали суть атмосферного давления, прежде чем говорить о датчике, который его измеряет. Поэтому в первой части статьи уделим внимание именно сути такого явления, как атмосферное давление.

Если вы хорошо в этом разбираетесь, тогда сразу переходите к той части, где мы будем непосредственно обсуждать мобильный барометр.

Что такое атмосферное давление?

Рыбы живут под водой. Они могут легко передвигаться не только вперед-назад, но и вверх-вниз. Однако мало кто задумывается над тем, что мы также «погружены» в что-то наподобие жидкости — атмосферу. И благодаря этой «жидкости» также можем не только передвигаться по горизонтали, но и подниматься вверх на самолетах и вертолетах, отталкиваясь от воздуха.

Но что такое атмосфера и почему мы погружены в нее?

Атмосфера — это воздух, а воздух — это смесь различных газов, то есть, «плавающих» в пространстве молекул различных веществ. И я говорю не только о банальном кислороде или углекислом газе. В воздухе также летают молекулы обычной воды (H2O) и других веществ.

Когда вода испаряется, с ее молекулами (H2O) ничего не происходит. Вопреки распространенному заблуждению, они не «рассыпаются» на атомы кислорода (О) и водорода (H2), а ровно в том же виде, в котором были водой, начинают парить в воздухе. Когда количество таких молекул (H2O) в воздухе становится большим, мы говорим, что повысилась влажность воздуха, то есть, в воздухе буквально стало очень много обычной воды.

Вода, азот, кислород, водород, метан — всем этим забито всё пространство вокруг нас. И каждая из этих молекул имеет свой вес. А когда что-то имеет вес, оно тут же падает на землю, то есть, притягивается к центру земли.

Мы находимся на самом дне этого «воздушного океана», глубиной примерно в 100 км. То есть, над нами нависает гигантский слой воздуха толщиной

100 км и весом в несколько миллионов миллиардов тонн:

атмосфера земли

Но если над нами так много воздуха и он имеет вес, почему мы не ощущаем никакой тяжести?

Прежде всего, воздух очень тяжелый. Если взять обычный маленький столик (метр на метр), то воздух будет давить на него с такой же силой, как если бы мы разместили на этом столе 10 легковых автомобилей:

давление, которое оказывает атмосфера на стол

И на каждый квадратный сантиметр любой поверхности, будь-то листочек на дереве или макушка головы, воздух давит с такой же силой, как килограммовая гиря. Получается, на каждый квадратный метр любой поверхности давит груз в 10 тонн!

Но как так получается, что мы не можем удержать на вытянутой руке 20-килограммовую гирю и в то же время можем легко держать раскрытую ладонь, на которую давит примерно 70 килограмм воздуха?

Весь секрет в том, что воздух не давит на все предметы только сверху вниз. Давление здесь работает так же, как и под водой, то есть, давит со всех сторон сразу. Нам не нужно пытаться удержать руку под весом атмосферы, ведь на нее давит 70 килограмм воздуха не только сверху, но и снизу:

давление воздуха на руку человека

Более того, ровно такое же давление испытывает наше тело не только снаружи, но и изнутри (воздух в легких, в желудке, в ушах за барабанными перепонками, давление крови). Поэтому суммарное давление на тело равняется нулю и мы его не ощущаем.

Когда мы вставляем трубочку в стакан с жидкостью, она не поднимается вверх, но как только мы начинаем вытягивать (высасывать) из трубочки воздух, его становится меньше и давление воздуха внутри трубки падает. В этот момент, атмосферное давление прижимает жидкость в стакане и она поднимается вверх по трубочке:

атмосферное давление и пить из трубочки

То есть, жидкость поднимается не потому, что мы ее как-то «притягиваем». Мы просто выкачиваем немножко воздуха из трубочки и атмосфера своим весом тут же поднимает жидкость. В космосе этот трюк не сработает, так как ничто не будет давить на сок в стакане.

То же касается и бутылки. Когда мы вытягиваем из нее воздух, давление внутри уменьшается и вот теперь бутылка начинает «ощущать» на себе всю тяжесть атмосферы. Ведь до этого давление воздуха снаружи бутылки полностью компенсировалось таким же давлением изнутри бутылки.

И чем больше воздуха мы выкачаем откуда-то, тем сильнее атмосфера раздавит этот предмет.

Или возьмите обычную присоску. Как она работает? Неужели весь секрет в ее «липкой» поверхности? Конечно же, нет. Весь секрет в том, что прижимая присоску к гладкой поверхности, вы выталкиваете из-под присоски воздух, создавая там пониженное атмосферное давление. И теперь атмосфера с огромной силой (10 тонн на квадратный метр) давит на присоску с внешней стороны и удерживает ее. Чем больше размер присоски, тем большая площадь, на которую будет давить атмосфера и тем сильнее она будет прижимать ее.

В общем, главное понимать одну простую вещь — мы находимся на «дне» атмосферы, то есть, на «дне океана» из различных молекул. И давление атмосферы постоянно изменяется.

Например, когда солнце нагревает землю, молекулы воздуха начинают ускоряться и расширяться, такие «горячие» молекулы поднимаются вверх, в результате чего давление внизу падает. Но как только давление в каком-то месте упало, сюда сразу же устремляются молекулы из близлежащих участков с высоким давлением:

почему дует ветер

Такое резкое движение мы ощущаем как ветер. Если разница в давлении слишком высокая, то и «напор» молекул будет очень сильным. Настолько сильным, что может вырывать деревья или разрушать дома.

Зачем на телефонах и часах нужен барометр, измеряющий давление?

Итак, мы живем на «дне океана» под названием атмосфера и неплохо было бы знать текущее давление. Как минимум, это позволило бы нам лучше предугадывать погоду на ближайший вечер.

Как я уже сказал, если давление воздуха вокруг вас падает, можете быть уверены в том, что рано или поздно оно начнет выравниваться. То есть, молекулы воздуха из области высокого давления устремятся к тому месту, где вы находитесь. Этот процесс будет сопровождаться ветром и плохой погодой.

Мы часто слышим от синоптиков такие слова как циклон или антициклон. Это и есть области низкого давления (циклон) и высокого давления (антициклон). То есть, вся погода крутится вокруг атмосферного давления.

К примеру, в день подготовки этой статьи барометр на моем смартфоне показал такую картину:

барометр на смартфоне

Уже в ближе к 18:00 я понимал, что ночью будет очень плохая погода. Так и произошло. К девяти часам вечера погода очень испортилась, начались сильные порывы ветра, метель.

Ровно то же мне могли показать и смарт-часы:

барометр на часах watch gt 2 pro

Для тех, кто увлекается рыбалкой, барометр в часах или смартфоне также является незаменимым инструментом. Ведь рыбы чувствуют изменение давления и по-разному себя ведут в зависимости от этого давления.

Но изменение погоды — далеко не главная функция барометра. В основном, барометр на фитнес-трекерах и многих спортивных часах используется для определения высоты. То есть, так называемый альтиметр (высотомер) — это и есть барометр, который сразу переводит давление в высоту.

Альтиметр Amazfit GTR

На самом деле, концепция здесь очень простая. Взять, к примеру, бутылку с водой. Мы можем легко поделить эту воду на секции:

разное давление в бутылке с водой

Интуитивно понятно, что давление воды на стенки бутылки будет разным в зависимости от секции. Мы даже можем убедиться в этом экспериментально, проколов маленькие отверстия в каждой секции:

воды вытекает под разным напором из-за разного давления

Там, где давление воды выше, вода будет выталкиваться под более сильным напором и наоборот. Получается, мы можем измерять глубину, просто измеряя, с какой силой вода давит на наш измеритель.

Ровно то же происходит и с атмосферой. Чем «глубже» мы находимся, тем сильнее давление молекул воздуха. Соответственно, чем выше мы поднимаемся, тем ниже это давление:

зависимость давления от высоты

Если бы у нас был какой-то прибор, ощущающий давление воздуха, мы могли бы легко переводить его показания в метры. Ведь мы хорошо знаем, какое нормальное давление на уровне моря. Получается, если это давление падает, значит мы либо поднимаемся, либо портится погода.

И это очень важно понимать, так как многие пользователи жалуются на показания высотомеров в своих фитнес-трекерах или спортивных часах. Вы можете находиться весь день в одном месте, а часы будут постоянно показывать вам перепады высоты. На самом же деле, это просто меняется давление воздуха .

Кроме того, многим устройствам нужна калибровка альтиметра (высотомера), чтобы устройство изначально понимало, какое атмосферное давление принимать за условные 0 метров высоты. Ведь вам зачастую не нужно знать свою высоту над уровнем моря, вы хотите знать ее над уровнем земли, на которой стоите.

Для такой калибровки обычно используются показания GPS-трекера (в смартфоне или часах). Когда устройство по спутникам определяет свои координаты, оно сразу же получает высоту этого места над уровнем моря (скажем, 150 метров) и принимает ее за условный ноль. Теперь, при подъеме на 9-й этаж, устройство покажет не 179 метров высоты над уровнем моря, а 29 метров от земли.

И прежде, чем мы уже наконец-то поймем, как работает барометр, осталось ответить на последний вопрос.

В чем же измеряется атмосферное давление?

К сожалению, для отображения давления используется множество разных единиц измерения. Одни часы могут отображать давление в миллиметрах ртутного столба, другие — в гектопаскалях. Полный же список всех единиц выглядит так:

  • Паскали
  • Бары
  • Атмосферы
  • Миллиметры ртутного столба
  • Метры водного столба
  • Фунт-сила на квадратный дюйм (psi)

Зачастую, на часах, смарт-часах и фитнес-браслетах указывается влагозащита именно в атмосферах (atm) или барах (bar). Все современные фитнес-трекеры, начиная от Apple Watch и заканчивая Mi Band, имеют влагозащиту в 5 atm (атмосфер) или 5 bar. Эти единицы взаимозаменяемые, так как 1 atm = 1 bar.

Представить себе давление в атмосферах очень легко, так как 1 атмосфера — это и есть то давление, которое оказывает вся наша атмосфера на поверхность земли. Если бы мы взвесили столб воздуха высотой в 100 км (вся атмосфера, содержащая молекулы) и диаметром в

1 см, он бы весил 1 кг.

Конечно же, когда речь идет о часах, производитель подразумевает не воздух, а воду. Эта маркировка в атмосферах указывает, на какую глубину можно безопасно погружать устройство. Однако вода почти в 775 раз тяжелее воздуха и соответственно давление под водой увеличивается гораздо быстрее.

Если мы хотим поднять давление воздуха с одной атмосферы до двух, нам нужно разместить над головой столб воздуха в 2 раза превышающий высоту атмосферы, то есть, нужны буквально две атмосферы.

Но чтобы ровно настолько же увеличить давление под водой, нам достаточно погрузится на 10 метров. Поэтому, давление в атмосферах под водой можно считать очень просто: 1 атм = 10 метр глубины. Если часы выдерживают давление в 5 атм, это значит, что они выдерживают давление, создаваемое водой на глубине 50 метров.

Одна атмосфера — это также 760 миллиметров ртутного столба или около 10 метров водяного столба. Это значит, что если бы мы попытались выпить ртуть со стакана через трубочку, то нам бы удалось это сделать только, если длина этой трубочки будет менее 76 сантиметров. Одна атмосфера просто не сможет поднять ртуть выше этого значения.

То же касается и воды. Если бы мы налили в очень длинную (например, 15 метровую) пробирку воду, а затем перевернули ее и поставили в ведро с водой, то вода в пробирке опустилась бы под своим весом до отметки в 10 метров, так как дальше давление атмосферы сравнилось бы с силой тяжести:

на какую высоту атмосферное давление поднимает ртуть и воду

Почему такая разница между ртутью и водой? Просто ртуть в 13 раз тяжелее воды, именно поэтому давление в 1 атмосферу (давление воздуха над уровнем моря) поднимает воду в пробирке гораздо выше (10 метров против 76 см).

Таким образом, если ваши часы или смартфон показывают давление, например, 730 мм рт. ст., это значит, что атмосферное давление понизилось, так как нормой считается именно 760 мм. Когда давление понизилось, оно уже не сможет поднять так высоко ртуть, соответственно, уровень ртути в трубочке (или пробирке) опустится с 76 см до 73 см.

К слову, именно таким образом и измеряли давление очень долгое время — смотрели, как сильно опускается и поднимается ртуть в стеклянной трубке. Но в современных гаджетах, конечно же, нет никакой ртути. И здесь мы плавно переходим к главному вопросу.

Как работает барометр в смартфонах и часах?

В мобильных устройствах используются MEMS-барометры. MEMS — это аббревиатура, которую можно расшифровать как микроэлектромеханические системы (МЭМС). Собственно, это микроскопические механизмы с электроникой внутри.

Теоретически измерить давление очень легко. Для этого можно сделать небольшую коробочку с гибкой мембраной:

пустая коробка

Что будет внутри коробочки — решать вам. Можно полностью откачать все молекулы воздуха, чтобы там образовался вакуум. Тогда мембрана будет изгибаться внутрь под давлением атмосферы. Чем выше давление, тем сильнее будет изогнута мембрана и наоброт:

высокое и низкое давление, оказываемое на мембрану датчика

Можно внутри коробочки сделать давление, равное одной атмосфере, то есть, идеальному давлению на уровне моря — 760 мм рт. ст.

В таком случае наша мембрана будет прогибаться то внутрь, когда атмосферное давление будет выше нормы (выше давления внутри коробочки), то наружу, когда атмосферное давление упадет и станет ниже того, что внутри коробочки:

высокое и низкое давление, оказываемое на мембрану барометра

Это примерно как наши уши. Когда мы взлетаем на самолете или поднимаемся на скоростном лифте, давление атмосферы резко падает (мы «выплываем со дна» атмосферы на «поверхность», где давление гораздо ниже). Но давление воздуха внутри уха (за барабанной перепонкой) осталось прежним, каким было еще на земле.

В результате барабанная перепонка продавливается наружу и мы чувствуем, будто уши заложило. Если глотнуть слюну, в глотке автоматически откроются небольшие отверстия, ведущие прямо к ушам и воздух (избыточное давление в ушах) по трубкам выйдет прямо в носоглотку.

Только в случае с барометром нам ни в коем случае нельзя запускать воздух в коробочку, ведь смысл именно в том, чтобы мембрана изгибалась.

Вот как выглядит реальный мобильный барометр:

mems барометр

Обратите внимание на его размеры (2*2*0.75 мм). И это даже не коробочка с воздухом внутри. Это общая «упаковка», под которой скрывается сама коробочка с мембраной и микросхема. То есть, сам чувствительный элемент здесь еще раз в 6-7 меньше. Вот еще одно фото барометра рядом с линейкой для оценки масштаба:

mems-барометр оценка масштаба

Ну хорошо, с этим всё ясно. Мембрана движется в ответ на изменение давления, это чисто механический процесс, понятный даже ребенку. Но как смартфон отслеживает это изменение? Какой датчик и каким образом может уловить столь ничтожные колебания кремниевой мембраны? А они действительно настолько незначительные, что увидеть их невооруженным глазом невозможно.

Для отслеживания изгиба мембраны используется мост Уитстона.

Я, правда, не хочу выходить за рамки популярной статьи и углубляться в подробности, которые будут неинтересны широкому кругу читателей. Но, с другой стороны, объяснение принципа работы барометра останется неполным, так как совершенно неясно, как же смартфон фиксирует изгибы мембраны.

Поэтому давайте поступим так. Если тема кажется вам уже раскрытой, не стоит портить впечатление от статьи, погружаясь в детали. Можете просто поставить оценку статье и подписаться на наш Telegram-канал, чтобы не пропускать другие интересные материалы.

Но если вы все еще здесь, тогда продолжим!

Что такое мост Уитстона и как он работает?

Изгиб мембраны регистрируется смартфоном очень просто — чем сильнее она деформируется, тем выше будет электрическое напряжение на ее контактах. То есть, если давление повышается, мембрана изгибается сильнее и электрическое напряжение растет, если понижается — электрическое напряжение падает.

Измерив, сколько вольт «выдает мембрана», мы узнаем, какое там напряжение и, соответственно, как сильно давление воздуха деформировало мембрану.

Остается лишь одна задача — превратить механическую деформацию мембраны в электрический ток. Для этого используют тензорезисторы. Еще их называют пьезорезисторами из-за так называемого пьезорезистивного эффекта, который очень многие путают с пьезоэлектрическим эффектом.

Теперь давайте выдохнем и забудем обо всех этих терминах!

Когда ток идет по проводу, мы можем сделать так, чтобы его стало меньше, то есть, мы можем сделать так, чтобы в какой-то точке электроны «замедлялись»:

ток протекает в проводе через резистор

Для этого мы используем простую детальку под названием резистор. В физическом плане это может быть просто очень тонкий проводок (тоньше того, по которому ток шел до резистора), спрятанный в «коробочку» или какой-то материал, хуже проводящий ток. Главное то, что после резистора падает напряжение и сила тока (количество электронов, проходящих за секунду).

Это как шланг с водой. Воде гораздо проще течь по широкой трубе, чем по очень узкой. Возвращаясь к нашим трубочкам, попробуйте попить сок из широкой и узкой трубочек. В первом случае вам придется прикладывать гораздо меньше усилий, так как сок будет течь свободнее.

А теперь представьте, что у нас есть резистор, который может физически растягиваться. И когда он растягивается, провода, по которым течет ток, становятся более узкими и длинными. Соответственно, такой резистор будет еще сильнее препятствовать протеканию тока. Но когда резистор будет сжиматься, провода станут более широкими и короткими, то есть, сопротивление такого резистора упадет:

Это и есть тензорезистор! То есть, резистор, сопротивление которого изменяется при физической деформации. Конечно, в современных MEMS-барометрах нет никаких растягивающихся проводков, но принцип ровно тот же. Так называемые пьезорезисторы (по сути — те же тензорезисторы) — это полупроводниковый материал, который изменяет сопротивление при механических воздействиях.

Итак, у нас есть резисторы и тензорезисторы. Что с ними делать дальше? А дальше мы делаем невероятно простую схему, соединяя 4 резистора вот таким образом:

мост уитстона

Это и есть мост Уитстона. Когда мы подключим к этому мосту напряжение от батарейки смартфона или часов, то по нему потечет ток и в каждом резисторе этот ток будет замедляться в зависимости от того, какое у каждого резистора сопротивление.

Всё, что нам осталось сделать — это измерить напряжение между точками A и B:

измерение моста уитстона

Весь смысл моста Уитстона заключается в том, что если правильно подобрать все четыре сопротивления, между этими точками не будет никакого напряжения, то есть, разницы потенциалов.

Другими словами, если на верхнем и нижнем проводе будет по 5 вольт, то между этими проводами не будет никакого напряжения (потенциал на верхнем и нижнем проводе одинаков), а значит и ток по проводу между точками A и B не будет протекать:

сбалансированный мост уитстона

Как же подобрать эти резисторы? Я упущу несложные расчеты и просто скажу, что напряжения между точками A и B не будет в том случае, если R1*R3 = R4*R2. То есть, если умножив сопротивление первого резистора на сопротивление третьего, мы получим такое же значение, как если бы умножили сопротивление четвертого резистора на сопротивление второго, то между точками A и B ток проходить не будет.

Каким образом мы получили эту закономерность (R1*R3=R4*R2), я расскажу только в комментариях, если это вообще кому-то будет интересно.

И вот теперь самое главное! У нас уже есть мост Уитстона, который мы предварительно сбалансировали (балансировка моста — это и есть подбор резисторов нужных сопротивлений, чтобы работала наша простая формула).

Теперь вместо одного из резисторов или же вообще вместо всех резисторов, мы ставим тензорезисторы, которые изменяют свое сопротивление при деформации. А сами резисторы размещаем на мембране, которая изгибается под давлением.

Когда мембрана будет деформироваться, она изменит и форму тензорезисторов (показаны зеленым цветом), из-за чего тот изменит свое сопротивление:

тензорезисторы в барометре

Но как только один из резисторов меняет сопротивление, происходит разбалансировка моста Уитстона, то есть, теперь уже R1*R3 не будет равняться R4*R2 и между точками A и B возникнет напряжение, которое смартфон моментально зафиксирует, так как он непрерывно измеряет электрическое напряжение между точками A и B.

Более того, мост Уитстона позволяет не только определить напряжение, но и направление тока. При определенных значениях сопротивлений напряжение в точке A будет меньше, чем в точке B и ток потечет от B к A, в противном случае, ток потечет в обратную сторону. То есть, мы можем легко определять в какую сторону отклонилась мембрана (падает ли атмосферное давление или растет).

Вот так и замеряют смартфоны и часы атмосферное давление, если они, конечно, оснащены барометром!

Более того, именно на этом принципе и основана работа любых весов. То есть, во всех весах также есть тензорезисторы и мост Уитстона. Когда вы становитесь на весы, то немного деформируете «мембрану», которая изменяет и сопротивление тензорезистора.

И последнее! Если в вашем смартфоне есть датчик давления, тогда для того, чтобы им воспользоваться, нужно скачать соответствующее приложение. Их очень много как на Android, так и для iPhone. Просто в магазине приложений введите в поиск слово «барометр» и скачайте понравившуюся программу. Если же в смартфоне нет датчика, то и приложение работать не будет.

Датчики атмосферного давления, барометры

LA-8126.ХХ Высокоточный датчик давления воздуха

Барометры (измерители атмосферного давления) — приборы, предназначенные не только для измерения атмосферного давления или давления воздуха, но также для определения высоты относительно уровня моря. Эти приборы используются на метеорологических станциях, воздушных и морских судах и т.д.

Разновидности барометров

Сами по себе такие приборы отличаются внешним видом, размерами, способом и точностью измерения, они могут быть стационарными и переносными. При этом барометр может быть не только аналоговым, но и цифровым. Электронные приборы не только удобны, но и функциональны.

По способу измерения принято различать жидкостные (ртутные) и безжидкостные (анероиды) устройства. Ртутный измеритель атмосферного давления выглядит как U-образная стеклянная трубка, внутри которой находится ртуть. При изменении атмосферного давления ртуть расширяется или сужается и, соответственно, поднимается или опускается по трубке. Искомую величину при этом определяют по разности показателей длинного и короткого участка трубки.

Анероиды воспринимают изменение давления эластичными волнообразными стенками вакуумной коробки. При изменении значения давления стенки то прогибаются, то выпячиваются. Так как они связаны со стрелкой прибора системой рычажков, на градуированной шкале стрелка показывает актуальную величину атмосферного давления, измеряемого в миллиметрах ртутного столба. В случае цифровых устройств данные измерений выводятся на дисплей.

Самописцы атмосферного давления

На метеостанциях для постоянных наблюдений за атмосферным давлением используют так называемые самописцы (или — барографы). Измерения величины атмосферного давления производятся постоянно в течение определенного промежутка времени (сутки или неделя). При этом колебания показателей прибор регистрирует на помещенной во вращающийся барабан градуированной ленте.

Принцип работы барографа основан на деформации стенок анероидных коробок, соединенных между собой. Их деформация передается посредством системы рычагов перу самописца. Так, в момент увеличения атмосферного давления стенки передают импульс рычажкам и они в свою очередь заставляют перо подниматься вверх. При уменьшении значения давления импульс от стенок вакуумных камер, передаваемый перу системой рычагов заставляет его чертить линию, направленную вниз.

Учитывая сферу применения таких приборов, они защищаются от действия прямых солнечных лучей, осадков, нагревательных приборов. Для компенсации возможных температурных влияний их конструкцию дополняют биметаллическими конденсаторами.

Метеорографы

Метеорографы используются для комплексного подхода к наблюдению за погодой. Они позволяют одновременно измерять и регистрировать значения атмосферного давления, температуры и влажности воздуха. В некоторых случаях к этим параметрам добавляется скорость воздушного потока (скорость ветра). Метеорограф может быть высокоточным, дополненным самописцем и предназначенным для получения актуальных метеорологических сводок, а может быть компактным и переносным, предназначенным для бытового использования в домашних условиях или в путешествиях. В первом случае его устанавливают на стационарной метеостанции, а также запускают в воздух на зондах или аэростатах, самолетах и ракетах.

Купить метеорографы, барометры, датчики атмосферного давления Вы можете купить в Санкт-Петербурге (СПб), Москве, Казани, Нижнем Новгороде, Челябинске, Новосибирске, Екатеринбурге, Самаре, Омске, Уфе, Ростове, Перми, Воронеже, Волгограде и других городах России.

Что такое датчик барометрического давления?

В барометрический датчик , также широко известный как барометрический воздух датчик давления (BAP), это тип управления двигателем. датчик обычно встречается на многих автомобилях. Он отвечает за измерение атмосферного давление среды, в которой движется автомобиль.

Соответственно, где находится датчик Баро?

В Барометрический Давление ( БАРО ) датчик является расположена во впускном коллекторе к задней части двигателя.

Кроме того, что такое датчик давления BMP180? В BMP180 Прорыв — барометрический датчик давления с я 2 Интерфейс C («Wire»). Этот давление зависит как от погоды, так и от высоты. В зависимости от того, как вы интерпретируете данные, вы можете отслеживать изменения погоды, измерять высоту или выполнять любые другие задачи, требующие точной давление чтение.

Соответственно, датчик карты — это то же самое, что датчик барометра?

КАК А ДАТЧИК КАРТЫ РАБОТАЕТ. Датчики MAP называются абсолютным давлением в коллекторе датчики а не всасывающий вакуум датчики потому что они измеряют давление (или его недостаток) во впускном коллекторе. Когда двигатель не работает, давление во впускном коллекторе составляет тем же как снаружи барометрический давление.

Как атмосферное давление влияет на головные боли?

Когда снаружи барометрическое давление опускается, создает разницу между давление снаружи воздух и воздух в пазухах. Это может привести к боли. Из этого исследователи пришли к выводу, что уменьшение барометрическое давление вызывает увеличение заболеваемости головные боли .

Рекомендуемые:

Датчик угла поворота коленчатого вала — это то же самое, что датчик коленчатого вала?

Датчик угла поворота коленчатого вала (CAS) — так назывался датчик на затылке NA Miatas. Он измерил положение выпускного распредвала. Когда вышел OBDII, Mazda добавила датчик положения коленчатого вала на шкив коленчатого вала

Что такое натриевый свет высокого давления?

Натриевые лампы высокого давления (HPS) являются частью семейства ламп высокой интенсивности, которые излучают большое количество света, обычно необходимого для уличного и охранного освещения. Комбинация металлов и газов внутри стеклянной трубки дает оранжево-белый свет, обычно встречающийся в уличных фонарях

Что происходит, когда датчик давления масла выходит из строя?

Индикатор давления масла горит. Если загорается индикатор низкого уровня масла, но вы проверяете уровень масла в двигателе, и он находится на хорошем уровне, то, возможно, виноват неисправный датчик давления масла. Когда этот датчик выходит из строя, он начинает давать неточные показания. После того, как показания выходят за рамки спецификации, включается сигнальная лампа

Что такое блок отправки давления масла?

Блок отправки давления масла управляет индикатором или манометром давления масла в зависимости от того, какой автомобиль оборудован. По сути, блок отправки давления масла — это то, что отправляет информацию о давлении масла в компьютер автомобиля, который затем управляет соответствующими индикаторами и датчиками

Что такое хороший регулятор давления топлива?

Сравнительная таблица регуляторов давления топлива в модельном ряду продуктов (PSI) 2020 года Aeromotive 13129 (Выбор эксперта) Return Style 30-70 Продукты Pro 10661 Не указано 4.5-9 Holley HOL 12-804 (Выбор редакции) Не указано 1-4 Holley 12-841 Тип байпаса 4,5-9 фунтов на кв. Дюйм

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *