Что называется рабочим циклом машины
Перейти к содержимому

Что называется рабочим циклом машины

  • автор:

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200 о С.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

принцип работы двс

В отличие от бензинового двигателя, при такте ‘впуск’ в цилиндры дизеля поступает чистый воздух. Во время такта ‘сжатие’ воздух нагревается до 600 о С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900 о С.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700 о С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

принцип работы двс

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

4. Рабочие циклы двигателей

Процесс (часть цикла), который происходит в цилиндре за один ход поршня, называют тактом. Двигатель, у которого рабочий цикл происходит за четыре хода поршня, называется четырехтактным.

Рабочий цикл четырехтактного дизельного двигателя.

Рассмотрим, что происходит в одном из цилиндров работающего двигателя

1-й такт — впуск (рис. 8, а). Поршень перемещается с помощью шатуна коленчатым валом вниз и, действуя подобно насосу, создает разрежение в цилиндре. Через открытый впускной клапан цилиндр заполняется чистым воздухом под влиянием разности давлений Выпускной клапан закрыт. В конце такта впускной клапан закрывается.

В начале работы двигателя коленчатый вал приводят во вращение посторонним источником энергии, например электрическим стартером или пусковым двигателем. В конце такта впуска давление в цилиндре в среднем составляет 0,08— 0,095 МПа, а температура 30—50°С.

2-й такт—сжатие (рис. 8, б). Поршень, продолжая движение, с помощью

коленчатого вала, перемещается вверх. Поскольку оба клапана закрыты, поршень сжимает воздух. Температура воздуха при сжатии повышается Благодаря высокой степени сжатия в дизельном двигателе давление в цилиндре повышается до 4 МПа, а воздух нагревается до температуры 600°С. В конце такта сжатия через форсунку в цилиндр впрыскивается порция дизельного топлива в мелкораспыленном состоянии.

3-й такт — рабочим ход, или расширение (рис: 8, в). Мелкие частицу топлива, соприкасаясь с нагретым сжатым воздухом, самовоспламеняются Подача топлива через форсунку и горение его продолжается некоторое время после того, как поршень пройдет ВМТ. Благодаря задержке самовоспламенения топливо в основном сгорает во время этого такта. Оба клапана при рабочем ходе закрыты. Температура газов при сгорании достигает 2000°С, давление повышается до 8 МПа. Под большим давлением расширяющихся газов поршень перемещается вниз и передает воспринимаемое им усилие через шатун на коленчатый вал, заставляя его производить механическую работу.

Рис. 8(3). Схема работы одноцилиндрового двигателя: а — первый такт (впуск), б — второй такт (сжатие), в — третий такт (рабочий ход), г — четвертый такт (выпуск)

4-й такт—выпуск (рис. 8, г). Поршень перемещается вверх, а выпускной

клапан открывается Отработавшие газы сначала под действием избыточного давления, а затем поршня удаляются из цилиндра. После перехода поршнем ВМТ выпускной клапан закрывается, а впускной клапан открывается, и рабочий цикл повторяется.

Рабочий цикл четырехтактного карбюраторного двигателя.

В отличие от дизельного у карбюраторного двигателя воздух и топливо поступают в цилиндр одновременно в виде горючей смеси, приготовленной карбюратором.

Каждый из тактов четырехтактного карбюраторного двигателя, так же как и дизельного, характеризуется положением клапанов и направлением движения поршня. Рабочий цикл четырехтактного карбюраторного двигателя протекает следующим образом.

Впуск — поршень перемещается в вниз. Впускной клапан открыт. Вследствие разрежения внутрь цилиндра через впускной канал поступает горючая смесь, которая перемешивается с остаточными газами, в результате чего образуется рабочая смесь.

Сжатие — поршень движется вверх. Впускной и выпускной клапаны закрыты. Объем над поршнем уменьшается, и рабочая смесь сжимается, благодаря чему улучшается испарение и перемешивание паров бензина с воздухом. К концу такта давление достигает 1,0 —1,2 МПа, а температура — 350. — 400°С,

Рабочий ход — сгорание и расширение. Оба клапана закрыты. В конце

такта сжатая рабочая смесь воспламеняется искрой. Поршень под давлением расширяющихся газов перемещается от ВМТ к НМТ. Давление газов достигает 2,5—4,0 МПа, а температура доходит до 2000°С.

Выпуск — поршень движется вверх. Открыт выпускной клапан. Отработавшие газы выходят через выпускной канал наружу.

Дизельные двигатели по сравнению с карбюраторными более экономичны. Вследствие высокой степени сжатия они расходуют на 25% меньше топлива (на единицу произведенной работы).

Дизельные двигатели работают на тяжелых сортах топлива, которое менее опасное в пожарном отношении.

Однако дизельным двигателям свойственны и некоторые недостатки:

— они более массивны, поскольку высокое давление газов в цилиндре требует увеличения прочности деталей;

— их труднее запускать, особенно в зимнее время, чем карбюраторные.

Рабочий цикл двухтактного карбюраторного двигателя (рис. 9)

В двухтактном двигателе отсутствуют клапаны. Впуск горючей смеси и выпуск отработавших газов у пускового двигателя осуществляется через окна в цилиндре, которые своевременно открываются и закрываются движущимся поршнем.

Рис. 9(4). Схема работы двухтактного двигателя: а — первый такт, б — конец первого и начало второго такта, в — конец второго такта; 1 — свеча зажигания, 2 — поршень, 3 — выпускное окно цилиндра, 4 — карбюратор, 5 — впускное окно цилиндра, 6 — кривошипная камера, 7- продувочный канал, 8 — цилиндр, 9 — выхлопная труба, 10 — картер

При движении вверх поршень 2 (рис. 9, а) перекрывает выпускные окна 3 в цилиндре, в результате чего над поршнем происходит сжатие рабочей смеси. Одновременно под поршнем создается разрежение, и из карбюратора 4 через впускные окна 5 цилиндра горючая смесь засасывается в кривошипную камеру 6.

При подходе поршня к верхней мертвой точке в свече зажигания 1 (рис. 9, б) образуется электрическая искра и рабочая смесь в цилиндре воспламеняется. На этом заканчивается первый такт.

Под давлением образовавшихся от сгорания рабочей смеси газов поршень

перемещается вниз, совершая рабочий ход, который происходит до тех пор, пока откроются выпускные окна и начнется выпуск, отработавших газов через выпускную трубу наружу. При движении поршня вниз горючая смесь в кривошипной камере сжимается. В конце второго такта поршень открывает окно продувочного канала 7, и горючая смесь нагнетается из кривошипной камеры в цилиндр, вытесняя из него отработавшие газы (рис. 9, в). Происходит продувка и одновременно наполнение цилиндра свежей горючей смесью. При этом горючая смесь частично выходит вместе с отработавшими газами. Таким образом, за два хода поршня (два такта) совершается полный рабочий цикл.

Двигатели с описанным рабочим процессом называют двигателями с кривошипно-камерной продувкой. Эти двигатели по конструкции и в эксплуатации проще, чем четырехтактные. Их работа протекает более равномерно потому, что рабочий ход происходит при каждом обороте коленчатого вала. Однако двухтактные двигатели менее экономичны, чем

четырехтактные. При продувке через выпускные окна теряется 30% горючей смеси. Поэтому двухтактные карбюраторные двигатели используют при кратковременной работе для запуска дизельного двигателя трактора.

Что называется рабочим циклом машины

Принципы работы двигателей, рабочие циклы и способы их осуществления

Как уже отмечалось, в связи с возвратно-поступательным движением поршня сгорание топлива в поршневых двигателях возможно лишь последовательными порциями, причем сгоранию каждой порции должен предшествовать ряд подготовительных процессов.

Совокупность различных процессов, происходящих в цилиндре в определенной последовательности, называется рабочим циклом; во время работы двигателя рабочий цикл периодически повторяется.

Вследствие периодичности процессов в цилиндре детали, ограничивающие его пространство, соприкасаются с высокотемпературными газами в течение относительно короткого времени — при сгорании топлива и в начале процесса расширения. В остальных процессах в цилиндре — в процессах выпуска, наполнения и сжатия— температура рабочего тела сравнительно невысокая, а температура свежего заряда не намного выше температуры атмосферного воздуха. Достигаемая при таких условиях в цилиндре температура рабочего тела (продуктов сгорания) — 2500 °С и более — существенно выше температуры, допустимой по условиям термопрочности для обычных конструкционных материалов, а температура наиболее горячих деталей — поршня и выпускных клапанов — в обычных двигателях не превышает 500 °С.

Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:

Важную роль в поддержании невысокой средней температуры деталей играет также их охлаждение, которое осуществляется простыми способами.

Таким образом, периодичность процессов в цилиндре, вытекающая из принципа действия поршневого двигателя, и простота способов охлаждения его деталей позволяют осуществлять цикл поршневого двигателя в значительно более широких температурных пределах, чем циклы тепловых двигателей других типов. Из термодинамики известно, что КПД теплового двигателя прямо пропорционален разности температур горячего и холодного источника теплоты; чем она больше, тем выше КПД . Именно этим объясняется, почему поршневой двигатель имеет самый высокий КПД по сравнению с КГ1Д других тепловых двигателей.

Схемы рабочих циклов. Рабочий цикл любого поршневого двигателя внутреннего сгорания может быть выполнен по одной из двух схем, представленных на рис. 1.

По схеме рис. 3, а рабочий цикл осуществляется следующим образом. Топливо и воздух в определенных соотношениях, необходимых для полного сгорания топлива, хорошо перемешиваются вне цилиндра двигателя и образуют горючую смесь. Полученная смесь поступает в цилиндр (впуск), после чего подвергается сжатию. При сжатии смеси в цилиндре создаются условия, необходимые для сгорания топлива. Во время впуска и сжатия смеси в цилиндре происходят дополнительное перемешивание топлива с воздухом и их нагрев.

Состав смеси характеризуется коэффициентом а избытка воздуха, представляющим собой отношение действительного количества воздуха к теоретически необходимому для полного сгорания топлива и определяемому из стехиометрических соотношений по элементарному составу топлива. При увеличении коэффициента а смесь обедняется, так как уменьшается относительное количество топлива в ней; и наоборот, при уменьшении коэффициента а смесь обогащается.

Подготовленная горючая смесь воспламеняется в цилиндре обычно от электрической искры. Вследствие быстрого сгорания смеси в цилиндре резко повышаются температура и давление, под воздействием которого происходит перемещение поршня в цилиндре. В процессе расширения нагретые до высокой температуры газы совершают полезную работу. Давление, а вместе с ним и температура газов в цилиндре при этом понижаются. После процесса расширения следует очистка цилиндра от продуктов сгорания (выпуск), и рабочий цикл повторяется.

В рассмотренной схеме подготовка смеси воздуха с топливом, т. е. процесс смесеобразования, происходит в основном вне цилиндра, поэтому двигатели, работающие по этой схеме, называют также двигателями с внешним смесеобразованием. К таким двигателям относятся карбюраторные двигатели, работающие на бензине, газовые двигатели, а также двигатели с впрыскиванием топлива во впускной трубопровод, т. е. двигатели, в которых при

меняется топливо, легко испаряющееся и хорошо перемешивающееся с воздухом при обычных условиях.

Сжатие смеси в цилиндре у двигателей с внешним смесеобразованием должно быть таким, чтобы давление и температура в конце сжатия не достигали значений, при которых могли бы произойти преждевременная вспышка или слишком быстрое (детонационное) сгорание. В зависимости от применяемого топлива, состава смеси, условий теплопередачи в стенки и т. д. давление конца сжатия у двигателей с внешним смесеобразованием составляет 1…2 МПа.

Если рабочий цикл двигателя происходит по схеме, описанной выше, то обеспечивается хорошее смесеобразование и использование рабочего объема цилиндра (коэффициент избытка воздуха а = = 0,8…1,1). Однако ограниченность степени сжатия смеси не позволяет улучшить экономичность двигателя.

В случае осуществления рабочего цикла по схеме, показанной на рис. 1, б, процесс смесеобразования происходит только внутри цилиндра. Рабочий цилиндр в данном случае заполняется не смесью, а воздухом (впуск), который подвергается сжатию. В конце процесса сжатия в цилиндр через форсунку под большим давлением впрыскивается топливо. При впрыскивании оно мелко распыливается и перемешивается с воздухом. Частицы топлива, соприкасаясь с горячим воздухом, испаряются, образуя топливовоздушную смесь.

Воспламенение смеси при работе двигателя по этой схеме происходит в результате высокого сжатия воздуха до температуры самовоспламенения смеси. Впрыскивание топлива во избежание преждевременного самовоспламенения начинается только в конце сжатия. К моменту самовоспламенения обычно процесс впрыскивания топлива еще продолжается. Смесь, образующаяся при впрыскивании топлива, получается неоднородной, вследствие чего полное сгорание топлива возможно лишь при значительном избытке воздуха/ В результате более высокой степени сжатия, допустимой при работе двигателя по данной схеме, достигается более высокий КПД .

После сгорания топлива следует процесс расширения и очистка цилиндра от продуктов сгорания (выпуск).

Таким образом, в двигателях, работающих по второй схеме, весь процесс смесеобразования и подготовка горючей смеси к сгоранию происходят внутри цилиндра. Поэтому такие двигатели называют двигателями с внутренним смесеобразованием.

Для двигателей с внутренним смесеобразованием могут быть использованы все виды жидкого и газообразного топлива. В подавляющем большинстве эти двигатели работают на жидком топливе. Двигатели, в которых воспламенение топлива происходит в результате высокого сжатия, называют также двигателями с воспламенением от сжатия или дизелями.

Внутреннее смесеобразование имеют двигатели с впрыскиванием легкого топлива (бензина) и принудительным воспламенением (от электрической искры).

Проводятся также работы по созданию двигателей со смешанным смесеобразованием, у которых небольшой расход топлива впрыскивается во впускной трубопровод (внешнее смесеобразование), а основной расход топлива подается в цилиндр (внутреннее смесеобразование). При таком смесеобразовании снижаются максимальное давление газов в цилиндре и уровень шума при сгорании.

Основные понятия и определения. Прежде чем рассматривать рабочие процессы двигателей, остановимся на основных понятиях и определениях, принятых для двигателей внутреннего сгорания.

Положения кривошипно-шатунного механизма, при которых ось шатуна лежит в плоскости кривошипа (ф = 0 ° и ф=180 если оси цилиндра и коленчатого вала совпадают), называют мертвыми точками, так как при этих положениях сила, приложенная к поршню, не может вызвать вращательное движение коленчатого вала. Как видно из рис. 2, мертвым точкам соответствуют крайние положения поршня в цилиндре. Крайнее положение поршня, при котором расстояние от него до оси вала достигает максимума (<р = 0°), называется внутренней мертвой точкой ( ВМТ ); крайнее положение поршня, при котором расстояние от него до оси вала достигает минимума (ср= 180 °), называется наружной мертвой точкой ( НМТ ).

Как при внешнем, так и при внутреннем смесеобразовании рабочий цикл поршневого двигателя состоит из следующих процессов: впуска, сжатия, сгорания и расширения (рабочий ход) и выпуска. Полезная работа совершается лишь в процессе сгорания и расширения.

Расстояние при перемещении поршня из одного крайнего положения в другое называется ходом S поршня и соответствует половине оборота коленчатого вала.

Рабочие процессы, совершаемые в течение одного хода поршня (часть рабочего цикла), называют тактом.

При рассмотрении рабочих процессов в двигателях широко используется диаграмма изменения давления р в цилиндре по ходу поршня за цикл от объема цилиндра — так называемая индикаторная диаграмма. Такую диаграмму получают во время испытания двигателя при помощи специального прибора — индикатора или строят по результатам теоретического расчета рабочего цикла. На индикаторной диаграмме ординаты в определенном масштабе показывают давление р газов в цилиндре, а абсциссы — ход поршня и соответствующий ему объем V цилиндра. Горизонтальные тонкие линии, нанесенные на диаграмме, характеризуют давление рк перед впускными органами; вертикальными линиями отмечены крайние точки положения поршня ( ВМТ и НМТ ).

Рабочий цикл в цилиндре двигателя внутреннего сгорания может быть осуществлен за четыре или за два такта. В первом случае цикл называют четырехтактным, а во втором — двухтактным.

Работа четырехтактного двигателя. Рассмотрим сначала двигатель, рабочий цикл которого осуществляется за четыре такта или за два оборота коленчатого вала. Такой двигатель называют четырехтактным.

Цилиндр такого двигателя закрыт крышкой, в которой расположены клапаны для впуска свежего заряда и выпуска продуктов сгорания (выпускных газов). Клапаны удерживаются в закрытом состоянии пружинами, а кроме того, давлением в цилиндре при процессах сжатия, сгорания и расширения. Открываются клапаны в нужные моменты с помощью газораспределительного механизма.

Газораспределительный механизм состоит обычно из рычагов, штанг и толкателей, на которые воздействуют кулачки, сидящие на распределительном валу. Распределительный вал приводится в движение от коленчатого вала двигателя и имеет вдвое меньшую частоту вращения, чем коленчатый вал. Каждый клапан открывается один раз за два оборота коленчатого вала.

Рабочий цикл в четырехтактном двигателе происходит следующим образом.

Первый такт — впуск. В начале первого такта поршень находится в положении, близком к ВМТ . Камера сгорания заполнена продуктами сгорания от предыдущего процесса, давление которых несколько больше атмосферного. На индикаторной диаграмме начальному положению поршня соответствует точка г (рис. 4, а). При вращении коленчатого вала (в направлении стрелки) шатун перемещает поршень к НМТ , а распределительный механизм открывает впускной клапан и сообщает надпоршневое пространство цилиндра двигателя с впускным трубопроводом. В результате движения поршня к НМТ цилиндр заполняется свежим зарядом (воздухом или горючей смесью). При этом вследствие сопротивления впускной системы и впускных клапанов давление в цилиндре становится на 0,01…0,03 МПа меньше давления рк перед впускными органами. На индикаторной диаграмме такту впуска соответствует линия га.

Давление перед впускными органами может быть близким к атмосферному в двигателях без наддува или превышать его в зависимости от степени наддува (рк=0,13…0,45 МПа) в двигателях с наддувом. При наддуве с увеличением заряда в цилиндре увеличиваются работа за цикл и мощность двигателя, однако при этом возрастают давление и температуры цикла.

Второй такт — сжатие. При обратном движении поршня к ВМТ происходит сжатие поступившего в цилиндр заряда. Давление и температура сжимаемого заряда повышаются, и при некотором перемещении поршня от НМТ давление в цилиндре становится равным давлению рк впуска (точка m на индикаторной диаграмме). Для улучшения наполнения цилиндра свежим зарядом впускной клапан некоторое время в начале такта сжатия продолжает оставаться открытым (до точки т). Запаздывание закрытия впускного клапана (30…70 ° угла поворота коленчатого вала) позволяет использовать для дозаряда возникающий в цилиндре вакуум, а также кинетическую энергию столба воздуха, движущегося по впускному трубопроводу.

После закрытия клапана при дальнейшем перемещении поршня давление и температура в цилиндре продолжают расти. Давление в конце сжатия будет зависеть от степени сжатия, герметичности рабочей полости, теплообмена со стенками, а также от начального давления ра сжатия.

На воспламенение и сгорание топлива как при внешнем, так и при внутреннем смесеобразовании требуется некоторое время, хотя и очень незначительное. Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня возможно близком к ВМТ . Поэтому воспламенение рабочей смеси от электрической искры в двигателе с внешним смесеобразованием (а также в двигателях с впрыскиванием бензина в цилиндр) или впрыскивание топлива в цилиндр двигателя с внутренним смесеобразованием обычно производится до момента достижения поршнем ВМТ , т. е. с некоторым опережением.

Таким образом, во время второго такта в цилиндре в основном производится сжатие заряда. Кроме того, в начале такта продолжается зарядка цилиндра, а в конце начинается горение топлива. На индикаторной диаграмме второму такту соответствует линия ас.

Третий такт — сгорание и расширение — происходит при ходе поршня от ВМТ к НМТ (рис. 4,в).

В начале такта интенсивно горит топливо, поступившее в цилиндр и подготовленное к этому в конце второго такта. Вследствие выделения большого количества теплоты температура и давление в цилиндре резко повышаются несмотря на некоторое увеличение внутрицилиндрового объема (линия cz). Под действием давления происходит дальнейшее перемещение поршня к НМТ и расширение газов. Во время расширения газы совершают полезную работу, поэтому третий такт называют также рабочим ходом. На индикаторной диаграмме третьему такту соответствует линия czb.

Четвертый такт — выпуск. Во время четвертого такта происходит очистка цилиндра от выпускных газов. Поршень, перемещаясь от НМТ к ВМТ , вытесняет газы из цилиндра через открытый выпускной клапан. Выпускной клапан начинает открываться в тот момент, когда поршень не доходит до НМТ на 40…60° угла поворота коленчатого вала; давление газов в цилиндре бывает еще достаточно высоким. Вследствие этого уменьшается сопротивление движению поршня во время такта выпуска и улучшается очистка цилиндра. На индикаторной диаграмме четвертому такту соответствует линия Ьп.

Четвертым тактом заканчивается рабочий цикл. При дальнейшем движении поршня в той же последовательности повторяются все процессы цикла.

Только такт сгорания и расширения является рабочим, остальные три такта осуществляются за счет кинетической энергии вращающегося коленчатого вала с маховиком и работы других цилиндров.

Чем полнее будет очищен цилиндр от выпускных газов и чем больше поступит в него свежего заряда, тем больше, следовательно, можно будет получить полезной работы за цикл.

Для улучшения очистки и наполнения цилиндра выпускной клапан закрывается не в конце такта выпуска (в ВМТ ), а несколько позднее (при повороте коленчатого вала на 10…50 ° после ВМТ ), т. е. в начале первого такта. По этой же причине

и впускной клапан открывается с некоторым опережением (за 10…40° до ВМТ , т.е. в конце четвертого такта). Таким образом, в конце четвертого такта в течение некоторого периода могут быть открыты оба клапана. Такое положение называется перекрытием клапанов. Оно способствует улучшению наполнения в результате эжектирующего действия потока газов в выпускном трубопроводе.

Работа двухтактного двигателя. Из рассмотрения четырехтактного цикла следует, что четырехтактный двигатель только по- F ловину времени, затраченного на цикл, ! работает как тепловой двигатель (такты сжатия и расширения). Вторую половину ( времени (такты впуска и выпуска) двигатель работает как насос.

Более полно время, отводимое на рабочий цикл, используется в двухтактных двигателях, в которых рабочий цикл совершается за два такта (за один оборот коленчатого вала). В отличие от четырехтактных двигателей в двухтактных очистка рабочего цилиндра от продуктов сгорания и наполнение его свежим зарядом, т. е. процессы газообмена, происходят только при движении поршня вблизи НМТ . При этом очистка цилиндра от выпускных газов осуществляется путем вытеснения их не поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью. Предварительное сжатие воздуха или смеси производится в специальном продувочном насосе или компрессоре, выполненном в виде отдельного агрегата. В небольших двигателях в качестве продувочного насоса иногда используют внутреннюю полость картера (кривошипная камера) и поршень двигателя.

В процессе газообмена в двухтактных двигателях некоторая часть воздуха или горючей смеси неизбежно удаляется из цилиндра вместе с выпускными газами через выпускные органы. Эта утечка воз-

Соответстаие между тактами и процессами явлиетси условным, так как большинство процессов и тактов, как правило, не совпадают по времени,

духа или горючей смеси учитывается при выборе подачи продувочного насоса или компрессора.

На рис. 3 показана схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена.

Основными особенностями устройства двигателя этого типа являются:
— впускные окна, расположенные в нижней части цилиндра, высота которых составляет около 10…20% хода поршня; открытие и закрытие впускных окон производится поршнем при его движении в цилиндре;
— выпускные клапаны, размещенные в крышке цилиндра, с приводом от распределительного вала, частота вращения которого обеспечивает открытие клапанов один раз за один оборот коленчатого вала;
— продувочный насос, нагнетающий воздух под давлением в ресивер для очистки цилиндра от продуктов сгорания и наполнения свежим зарядом.

Рабочий цикл в двигателе осуществляется следующим образом.

Первый такт соответствует ходу поршня от ВМТ к НМТ . В цилиндре только что произошло сгорание (линия cz) и начался процесс расширения газов, т. е. осуществляется рабочий ход. Несколько раньше момента подхода поршня к впускным окнам открываются выпускные клапаны в крышке цилиндра, и продукты сгорания начинают вытекать из цилиндра в выпускной патрубок; при этом давление в цилиндре резко падает (линия zn). Впускные окна открываются поршнем, когда давление в цилиндре становится примерно равным давлению предварительно сжатого воздуха в ресивере или немного выше его. Воздух, поступая в цилиндр через впускные окна, вытесняет через выпускные клапаны оставшиеся в цилиндре продукты сгорания и заполняет цилиндр (продувка), т.е. осуществляется газообмен (участок па на индикаторной диаграмме).

Таким образом, в течение первого такта в цилиндре происходит сгорание топлива, расширение газов, выпуск газов, продувка и наполнение цилиндра.

Второй такт соответствует ходу поршня от НМТ к ВМТ . В начале хода поршня продолжаются процессы удаления выпускных газов, продувки и наполнения цилиндра свежим зарядом. Конец продувки цилиндра (линия ak) определяется моментом закрытия впускных окон и выпускных клапанов. Последние закрываются или одновременно с впускными окнами, или несколько ранее. Давление в цилиндре к концу газообмена в двухтактных двигателях несколько выше атмосферного и зависит от давления воздуха в ресивере. С момента окончания газообмена и полного перекрытия поршнем впускных окон начинается процесс сжатия воздуха. Когда поршень не доходит на 10…30° по углу поворота коленчатого вала до ВМТ , в цилиндр через форсунку начинает подаваться топливо.

Следовательно, в течение второго такта в цилиндре происходит окончание выпуска, продувка и наполнение цилиндра в начале хода поршня и сжатие при его дальнейшем ходе.

Кроме рассмотренной выше прямоточной клапанно-щелевой схемы газообмена в двухтактных двигателях применяют и другие схемы.

Петлевая схема газообмена значительно упрощает конструкцию двигателя по сравнению с клапанно-щелевой, но при этом ухудшается качество газообмена и возникают потери воздуха или смеси при наполнении. Петлевая схема газообмена отличается большим разнообразием конструктивного выполнения и применяется в двигателях различного назначения (от маломощных для мопедов и до крупных мощностью в несколько десятков тысяч киловатт для судов).

Прямоточная схема газообмена с противоположно движущимися поршнями, в которой один поршень управляет впускными окнами, а другой — выпускными, обеспечивает высокое качество газообмена.

Для предварительного сжатия горючей смеси или воздуха, как было указано выше, в двухтактных двигателях может быть использована внутренняя полость картера (кривошипная камера). Такие двигатели называются двигателями с кривошипно-камерной схемой газообмена. Они имеют герметично закрытый картер, который и служит продувочным насосом. При движении поршня 1 от НМТ к ВМТ объем пространства под ним увеличивается и давление падает ниже атмосферного, т.е. в кривошипной камере 2 создается вакуум. Вследствие этого атмосферный воздух устремляется в картер через автоматически действующий впускной клапан. При обратном движении поршня до момента открытия впускных окон происходит сжатие свежего заряда в кривошипной камере. После открытия впускных окон сжатый свежий заряд вытесняется из камеры в цилиндр.

Двухтактные двигатели с кривошипно-камерной схемой газообмена отличаются простотой устройства. Однако при данном способе газообмена очистка цилиндра и наполнение его свежим зарядом ухудшаются, в результате чего уменьшается мощность двигателя, увеличивается расход топлива.

Из индикаторной диаграммы рабочего цикла двухтактного двигателя видно, что на части хода поршня, когда происходит газообмен, полезная работа очень мала, т. е. практически не совершается. Объем V„, соответствующий этой части хода поршня, называется потерянным. Тогда объем, описываемый поршнем при движении от точки Ь, определяющей момент начала сжатия, до ВМТ и называемый действительным рабочим объемом, V\= Vh — Vn-

Из сравнения рабочих циклов четырех-и двухтактных двигателей следует, что при одинаковых размерах цилиндра и частотах вращения мощность двухтактного двигателя значительно, больше. Поскольку число рабочих циклов больше в 2 раза, ожидаемый рост мощности двухтактного двигателя выше в 2 раза. В действительности мощность двухтактного двигателя увеличивается приблизительно в 1,5…1,7 раза вследствие потери части рабочего объема, ухудшения очистки и наполнения, а также затрат мощности на приведение в действие продувочного насоса. К преимуществам двухтактных двигателей следует отнести большую равномерность крутящего момента, так как полный рабочий цикл осуществляется при каждом обороте коленчатого вала (а не за два, как в четырехтактных). Существенным недостатком двухтактного процесса по сравнению с четырехтактным является малое время, отводимое на процесс газообмена. Очистка цилиндра от продуктов сгорания и наполнение его свежим зарядом более совершенно происходят в четырехтактных двигателях. Кроме того, в двухтактном двигателе температура поршня, крышки цилиндра и клапанов выше, чем в четырехтактном.

При внешнем смесеобразовании в результате продувки цилиндра горючей смесью она частично выбрасывается через выпускные окна, поэтому двухтактный процесс чаще применяется в дизелях. Исключение составляют мотоциклетные, лодочные и другие двигатели небольшой мощности, для которых большее значение имеют простота и компактность конструкции, чем экономичность.

Как в четырехтактных, так и двухтактных двигателях, рабочие процессы осуществляются только в одной полости цилиндра, расположенной над поршнем. Такие двигатели принято называть двигателями простого действия.

Для увеличения цилиндровой мощности можно использовать также полость, расположенную под поршнем. Двигатели, в которых рабочие циклы осуществляются в полостях, расположенных с обеих сторон поршня, называются двигателями двойного действия. Увеличение мощности двигателей двойного действия по сравнению с двигателями простого действия составляет только 80…85% вследствие уменьшения рабочего объема нижней полости из-за проходящего через эту полость штока.

Ввиду значительного усложнения конструкции и малой надежности двигатели двойного действия в настоящее время не создают. Необходимое увеличение цилиндровой мощности достигается применением наддува, что проще и надежнее.

Что такое рабочий цикл двигателя автомобиля

Рабочий цикл четырехтактного двигателя что это

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Бензиновый двигатель автомобиля

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Дизельный двигатель

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

Что такое крутящий момент и мощность двигателяРекомендуем также прочитать статью о том, что такое крутящий момент и мощность двигателя. Из этой статьи вы подробно узнаете о данных характеристиках, в чем измеряется мощность и момент двигателя, как эти показатели зависят друг от друга и т.д.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Многоцилиндровый двигатель автомобиля рабочий цикл

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Дизельный двигатель КПДРекомендуем также прочитать статью о КПД дизельного двигателя. Из этой статьи вы узнаете о данном параметре и от чего зависит КПД, а также почему дизельные моторы имеют КПД выше по сравнению с бензиновыми ДВС.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Крутящий момент, мощность и обороты двигателя

Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.

Обороты двигателя

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Двигатель Мередес с объемом 5.0

Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.

Дизельный двигатель

Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.

Виды двигателей внутреннего сгорания

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Электромобиль плюсы и минусы

Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *