Рядный четырехцилиндровый двигатель имеет коленвал на котором
Многоцилиндровые двигатели, как уже отмечалось в предыдущей статье, представляют собой конструкцию, объединяющую в единое целое несколько одноцилиндровых двигателей с одним общим коленчатым валом. При этом количество рабочих ходов за два полных оборота коленчатого вала (720˚) в таком двигателе, при работе по четырехтактному циклу, будет равно количеству цилиндров.
В каждом цилиндре протекают одинаковые рабочие процессы, но не одновременно. Для того, чтобы представить работу многоцилиндрового двигателя, необходимо знать порядок чередования одноименных тактов по цилиндрам и интервалы одноименных тактов в различных цилиндрах. Эти интервалы определяют в углах поворота коленчатого вала, принимая за начало отсчета нахождение поршня в верхней мертвой точке (ВМТ).
Для уменьшения локальной нагрузки на коленчатый вал выбирают такой порядок работы цилиндров, чтобы такты расширения (рабочего хода) не протекали одновременно в смежных цилиндрах. Кроме того, при чередовании тактов рабочего хода в удаленных друг от друга цилиндрах способствует более эффективному и равномерному охлаждению двигателя.
Очевидно, что у четырехтактного четырехцилиндрового однорядного двигателя одноименные такты должны следовать через 180˚ угла поворота коленчатого вала. Следовательно, и шатунные шейки коленчатого вала должны быть расположены под углом 180˚, т. е. лежать в одной плоскости. При этом шатунные шейки первого и четвертого цилиндров направлены в одну сторону относительно оси коленчатого вала, а шатунные шейки второго и третьего цилиндров – в противоположную сторону. Это обеспечивает равномерное чередование рабочих ходов в цилиндрах двигателя. Последовательность чередования одноименных тактов в различных цилиндрах двигателя в течение его рабочего цикла называется порядком работы цилиндров двигателя.
Для четырехцилиндрового рядного двигателя возможны два варианта чередования тактов в цилиндрах: 1-2-4-3 и 1-3-4-2 (нумерация цилиндров ведется от передней части двигателя по ходу автомобиля или, в случае с поперечным расположением двигателя, со стороны, противоположной маховику). С точки зрения описанных выше требований оба порядка работы цилиндров равноценны, поэтому применяются в разных двигателях, устанавливаемых на автомобилях. Так, например, на автомобильных двигателях, используемых Горьковским автомобильным заводом (ГАЗ-3102, ГАЗ-2410 т. п.) обычно используют последовательность работы цилиндров 1-2-4-3, а на двигателях автомобилей ВАЗ и Москвич – 1-3-4-2.
Работа четырехтактного четырехцилиндрового рядного двигателя с порядком работы цилиндров 1-3-4-2 подробно описана в Таблице 1.
Тест «Кривошипно-шатунный механизм»
Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Кривошипно-шатунный механизм», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 «Техническое обслуживание и ремонт автомобильного транспорта», по профессии 23.01.03 «Автомеханик», 1 курс.
«Кривошипно-шатунный механизм»
1.Какие детали КШМ относятся к неподвижной группе?
а) блок цилиндров, картер, крышка блок-картера, маховик
б) блок цилиндров, картер, крышка блок-картера, коленчатый вал, гильза цилиндров
в ) блок цилиндров, картер, крышка блок картера, гильза цилиндров, прокладка блок-картера
2.Из каких материалов изготавливают блок-картер современного двигателя?
а) из легированной стали
б) из бронзы или латуни
в) из чугуна или алюминиевых сплавов
3.Чем закрывается блок-картер двигателя сверху и снизу?
а) сверху и снизу специальными кожухами
б) сверху крышкой цилиндров, снизу кожухом маховика
в) сверху крышкой цилиндров, снизу поддоном картера
4.Как закрывается блок цилиндров на двигателе КамАЗ-740 сверху?
а) двумя головками из чугуна
б ) каждый цилиндр отдельной головкой из алюминиевого сплава
в) двумя головками из алюминиевого сплава
г) одной головкой из алюминиевого сплава
5.Какие детали КШМ относятся к подвижной группе?
а) коленчатый вал, маховик, поршень, поршневые кольца, шатун, коренные подшипники
б ) коленчатый вал, маховик, поршень, поршневые кольца, шатун, шатунные подшипники
в) коленчатый вал, маховик, поршень, поршневые кольца, шатун, поддон картера.
6.Что является направляющей для поршня при его перемещениях в двигателе?
б ) гильза цилиндра
в) коленчатый вал
7.Что называют зеркалом цилиндра?
а) установочные пояски гильзы
б) внутреннюю поверхность гильзы цилиндров
в) наружную поверхность гильзы цилиндров.
г) специальное устройство на торце гильзы
8.Что означает выражение: «На двигателе установлены мокрые гильзы?»
а) гильза, внутренняя поверхность которой смазывается маслом б) гильза, наружная поверхность которой омывается охлаждающей жидкостью
в) гильза, которая охлаждается воздухом
9.Что такое камера сгорания?
а ) объем между днищем поршня и головкой цилиндра, когда поршень находится в ВМТ
б) весь объем расположенный под поршнем
в) объем, в котором происходят рабочие процессы двигателя.
10.Сколько головок цилиндров имеет двигатель ЗиЛ-508?
11.Как затягивают болты или шпильки крепления головок цилиндров?
а) в такой последовательности как работает двигатель с применением удлинителя ключа
б) затяжку проводят, прилагая к ключу как можно большее усилие
в ) затяжку проводят равномерно в определенной последовательности в 2-3 приема, с определенным усилием
12.Почему головку поршня выполняют меньшего диаметра, чем юбку?
а) для удобства установки компрессионных и маслосъемных колец б) для равномерного распределения давления газов на поршень
в) для предотвращения заклинивания поршня при нагреве его во время работы
13.Из какого материала изготавливают поршни?
а) из бронзового сплава
б) из алюминиевого сплава
14.Каким способом фиксируется поршневой палец в поршне?
а ) стопорными кольцами
б) стопорными штифтами
в) установочными болтами
15.По назначению поршневые кольца делятся на:
а) уплотнительные и маслосъемные
б) компрессионные и уплотнительные
в) к омпрессионные и маслосъемные.
г) уплотнительные и стопорные
16.Какое компрессионное кольцо работает в самых тяжелых условиях?
17. Какая деталь соединяет коленчатый вал двигателя с поршнем?
А поршневой палец
в) шатунный подшипник.
18. Сколько шатунов крепится на 1 шатунной шейке коленчатого вала 8-ми цилиндрового V -образного двигателя?
19. Рядный четырехцилиндровый двигатель имеет коленчатый вал на котором
а) 4коренных и 4шатунных шеек
б ) 5коренных и 4шатунных шеек
в) 4коренных и 5шатунных шеек
г) 5коренных и 5шатунных шеек.
20. Для чего предназначена нижняя головка шатуна с крышкой?
а) для соединения шатуна с поршнем
б) для соединения шатуна с коленчатым валом
в) для соединения шатуна с поршневым пальцем.
Критерии оценок тестирования:
Оценка «отлично» 18-20 правильных ответов из 20 предложенных вопросов;
Оценка «хорошо» 14-17 правильных ответов из 20 предложенных вопросов;
Оценка «удовлетворительно» 10-13 правильных ответов из 20 предложенных вопросов;
Оценка неудовлетворительно» 0-9 правильных ответов из 20 предложенных вопросов.
Список литературы
Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.
Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.
Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.
Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.
Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.
Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.
Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.
Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.
Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.
Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.
Жолобов Л.А., Конаков А.М. Ж-79 Устройство и техническое обслуживание автомобилей категорий «В» и «С» на примере ВАЗ-2110, ЗИЛ-5301 «Бычок». Серия «Библиотека автомобилиста». – Ростов-на-Дону: «Феникс», 2002.
Рядный четырехцилиндровый двигатель имеет коленчатый вал на котором
Конфигурация I4 для четырехтактного двигателя является несбалансированной, но проста в производстве (для двухтактного двигателя с чередованием работы цилиндров через 90° в порядке 1-3-4-2 или 1-2-4-3 такая конструкция — сбалансированная). При этом четырёхцилиндровый двигатель имеет примерно на треть меньше деталей, чем шестицилиндровый того же объёма и мощности, и требует примерно на столько же меньше времени для многих операций по обслуживанию и ремонту. Поэтому она находит применение обычно в сравнительно бюджетных автомобилях с относительно небольшим рабочим объёмом двигателя, а также автомобилях, для которых простота в ремонте и обслуживании важнее уровня комфорта (такси, внедорожники и т. п.).
Современные рядные 4-цилиндровые двигатели имеют рабочий объём обычно от 0,7 до 2,3 литра. С ростом рабочего объёма уровень вибраций значительно возрастает, поэтому на современных двигателях этой конфигурации с рабочим объёмом более 2,0 л., как правило, используются дополнительные балансировочные (успокоительные) валы, позволяющие приблизить уровень вибраций к рядным шестицилиндровым двигателям аналогичного рабочего объёма.
В прошлом, однако, I4 бо́льших рабочих объёмов не были редкостью.
В начале XX века существовали гоночные автомобили с рядными четырёхцилиндровыми двигателями рабочим объёмом 10-17 литров — например, De Dietrich. Мощность этих двигателей, однако, была весьма невелика — обычно порядка 70-100 л. с., что объясняется тем, что их максимальные обороты составляли лишь около 1500 об/мин.
В довоенные годы четырёхцилиндровые автомобильные двигатели большого объёма не были редкостью, особенно на грузовиках. Сюда можно отнести, например, советские ГАЗ М-1, ГАЗ-АА и их производные (3285 см³).
International Harvester с 1915 по 1926 год использовал на своих грузовиках 3,3-литровую нижнеклапанную рядную четвёрку, а в 1961—1972 годах выпускал рядные 4-цилиндровые моторы семейства Comanche рабочим объёмом 2,5 и 3,2 л. Все легковые и грузовые автомобили Ford вплоть до появления в начале 1930-х годов Ford Flathead V8 имели нижнеклапанные рядные четырёхцилиндровые двигатели (фактически двух семейств — Ford T и Ford A). Chrysler c 1926 года и до полного перехода на рядные шестёрки в 1932 году использовал на бюджетных моделях своих марок (S-Series) нижнеклапанные рядные четырёхцилиндровые моторы рабочим объёмом 2,7…3,2 л. Двигатель Pontiac Tempest модели 1961-63 годов имел рабочий объём 3188 см³ и не имел балансировочных валов.
Из относительно недавних примеров, западногерманская фирма Porsche выпускала автомобили с 2990-кубовыми I4.
Советские и российские автомобили «Волга» и УАЗ в течение длительного периода времени (с 1957 по начало 2000-х) оснащались рядными четырёхцилиндровыми двигателями с алюминиевыми гильзованными блоками и клапанным механизмом OHV производства ЗМЗ и УМЗ, которые имели рабочий объём 2,445 литра (имелись версии объёмом 2,9 литра) и не имели балансировочных валов. В настоящее время автомобили УАЗ снабжаются рядными четырёхцилиндровыми моторами производства ЗМЗ семейства 409 (с чугунным блоком и клапанным механизмом DOHC, никак не связанного с ранее упомянутым), с рабочим объёмом 2,7 литра и балансировочными валами.
Все эти двигатели были достаточно малооборотными и относительно тяжёлыми, что, наряду с особыми мерами при конструировании и при правильной настройке, практически сводило на нет нежелательные вибрации по сравнению с I4 меньшего объёма. Хотя, скажем, двигатель «Понтиака» оказался очень чувствителен к настройке карбюратора.
В настоящее время одними из наибо́льших по рабочему объёму серийных рядных четырёхцилиндровых бензиновых двигателей являются японские моторы семейства Toyota 3RZ-FE с рабочим объёмом 2,7 л (Toyota Land Cruiser Prado и другие модели). Четырёхцилиндровые дизели такого и большего объёма не являются редкостью и часто используются на грузовиках и тракторах, для которых уровень вибраций не является определяющим фактором.
V-образный четырёхцилиндровый двигатель — весьма редкая конфигурация. Изредка применялся в начале XX-века на мотоциклах, гоночных автомобилях и самолетах. Массовыми реализациями такой конфигурации в отечественном автопроме были лишь двигатели Мелитопольского моторного завода МеМЗ-965, МеМЗ-966, МеМЗ-968, применявшиеся на автомобилях «Запорожец» и ЛуАЗ. Такая конфигурация была выбрана из соображений достижения компактности силового агрегата как в длину, так и в ширину и упрощения его системы воздушного охлаждения. Однако конфигурация V4 полностью несбалансированная и имеет неравномерное чередование вспышек в цилиндрах. По этой причине автомобили «Запорожец» издают при работе характерный неприятный тарахтящий звук (на самом деле в основном из-за системы воздушного охлаждения, для «водяных» V4 это вовсе нехарактерно, по звуку и характеру работы они несколько напоминают V6, с которыми обычно и унифицированы). В мировой практике V4 водяного охлаждения в своё время находили широчайшее применение в модельном ряду европейского филиала Ford Motor Company, в частности на моделях Ford Taunus и Ford Granada, а также (тот же двигатель) на автомобилях SAAB, на которые он ставился вместо двухтакного трёхцилиндрового, опять же, благодаря компактности.
Оппозитный четырехцилиндровый двигатель — поршневой двигатель внутреннего сгорания, в котором угол между рядами цилиндров составляет 180 градусов. В автомобильной и мототехнике оппозитный двигатель применяется для снижения центра тяжести, вместо традиционного V-образного. Оппозитный двигатель в отличие от других четырехцилиндровых двигателей, самый сбалансированный. Коленчатый вал оппозитного двигателя испытывает меньшие нагрузки, что позволяет развивать большие обороты двигателя, и снимать большую удельную мощность не увеличивая массу.
По сравнению с рядным четырехцилиндровым двигателем имеет (как и V-образный двигатель) более сложную конструкцию.
Наиболее широкое распространение оппозитный двигатель получил в модели Volkswagen Käfer выпущенной за годы производства.
Компания Porsche использует его в большинстве своих спортивных и гоночных моделей, таких как Porsche 997, Porsche 987 Boxster и другие.
Оппозитный двигатель является также отличительной чертой автомобилей марки Subaru, который устанавливается практически во все модели Subaru c 1963 года. Большинство двигателей этой фирмы имеют оппозитную компоновку, которая обеспечивает очень высокую прочность и жёсткость блока цилиндров.
Volkswagen Transporter T1 — T3 бензиновые версии моторов также были оппозитными. Малая высота двигателя позволяла устанавливать его под полом салона.
Рядный двигатель: 4 и 6 цилидровый преимущества и недостатки
На многих современных автомобилях используется рядный двигатель, в котором в основном 4 цилиндра, но в последние время появились автомобили, в которых используется рядный шестицилиндровый ДВС. Шестицилиндровые рядные ДВС отличаются меньшим расходом топлива по сравнению с V — образными ДВС. У рядного ДВС цилиндры расположены в один ряд, а у V образных они расположены в два ряда под определенным углом друг к другу. Рядные ДВС были одни из самых первых, которые пришли на смену паровым двигателям. Мы недавно писали про поршневой двигатель внутреннего сгорания, там более подробно рассмотрены некоторые моменты.
Как все начиналось?
Предком современного рядного ДВС был одноцилиндровый двигатель. Придумал и построил его Этьен Ленуар еще в 1860 году. Принято считать именно так, хотя попытки получить патент на данный двигатель были и еще до Ленуара. Но именно его разработка максимально похожа на те конструкции, что сегодня установлены под капотами большинства бюджетных серийных легковых авто.
Мотор имел всего один цилиндр, а мощность его была равна огромным на то время 1,23 лошадиным силам. Для сравнения, современная «Ока» 1111 имеет два цилиндра и мощность ее от 30 до 53 лошадиных сил.
Больше и мощнее
Идея Ленуара оказалась гениальной. Многие инженеры и изобретатели тратили годы и силы на то, чтобы максимально усовершенствовать двигатель (конечно, на уровне, существующих на тот момент технических возможностей). Главный упор был сделан на повышение мощности.
Вначале внимание концентрировали на единственном цилиндре – пытались увеличить его размер. Тогда всем казалось, что увеличив размер, можно получить большую мощность. И увеличение объема тогда было проще всего. Но одним цилиндром не обошлось. Пришлось сильно увеличить и остальные детали – шатун, поршень, блок.
Все те двигатели получались очень нестабильными, имели большую массу. В процессе работы такого мотора была огромная разница во времени между тактами воспламенения смеси. Буквально каждая деталь в таком агрегате гремела и тряслась, что заставляло инженеров думать над решением. И они оснастили систему балансиром.
Тупиковый путь
Скоро всем стало понятно, что исследования зашли в тупик. Двигатель Ленуара не смог нормально и корректно работать, так как соотношение мощности, массы и размеров было ужасным. Нужна была масса дополнительной энергии, чтобы снова увеличивать объем цилиндра. Многие стали считать идею создания двигателя крахом. И люди до сих пор бы ездили на лошадях и повозках, если бы не одно техническое решение.
Конструкторы начали осознавать, что можно вращать коленчатый вал не только одним поршнем, но и сразу несколькими. Самым простым оказалось изготовление рядного двигателя – добавили еще несколько цилиндров.
Первый четырехцилиндровый агрегат мир смог увидеть в конце XIX века. Сравнить его мощность с современным двигателем нельзя. Однако по эффективности он был выше, чем все прочие его предшественники. Мощность удалось увеличить благодаря повышенному рабочему объему, то есть посредством добавления цилиндров. Довольно быстро специалисты различных компаний смогли создать многоцилиндровые моторы вплоть до 12-цилиндровых монстров.
Принцип действия
Как действует ДВС? Не считая того, что каждый двигатель имеется разное количество цилиндров, рядный двигатель с шестью или четырьмя цилиндрами работает одинаково. Принцип основывается на традиционных характеристиках любых ДВС.
Все цилиндры в блоке располагаются в один ряд. Коленчатый вал, приводимый в действие поршнями за счет энергии сгорания топлива, единственный для всех деталей цилиндро-поршневой группы. То же самое касается и ГБЦ. Она единственная на все цилиндры. Из всех существующих рядных двигателей можно выделить сбалансированные и несбалансированные конструкции. Оба варианта рассмотрим далее.
Баланс
Он важен по причине сложной конструкции коленчатого вала. Необходимость в балансировке зависит от числа цилиндров. Чем больше их в конкретном ДВС, тем большим должен быть баланс.
Несбалансированным двигателем может быть лишь та конструкция, где цилиндров не больше четырех. В противном случае в процессе работы появятся вибрации, сила которых будет способна разрушить коленчатый вал. Даже дешевые двигатели с шестью цилиндрами с балансиром будут лучше, чем дорогие рядные четверки без балансирных валов. Так, чтобы улучшить баланс, рядный двигатель с четырьмя поршнями иногда тоже может требовать установки успокоительных валов.
Расположение мотора
Традиционные четырехцилиндровые агрегаты обычно монтируются под капотом автомобиля продольно, либо поперечно. А вот шестицилиндровый агрегат можно установить лишь продольно и более никак (за исключением некоторых моделей «Вольво» и авто «Шевроле Эпика»).
Рядный ДВС, обладающий несимметричной конструкцией относительно коленчатого вала, также имеет особенности. Часто вал сделан с компенсирующими отливами – эти отливы должны гасить силу инерции, образующуюся в результате работы поршневой системы.
Рядная шестерка сегодня уже имеет меньшую популярность – всему виной существенный расход топлива и крупные габаритные размеры. Но даже несмотря на большую длину блока цилиндров, двигатель отлично сбалансирован.
Преимущества и недостатки агрегата
Кроме нескольких нюансов, рядные ДВС имеют такие же преимущества и те же недостатки, что и большинство V-образных двигателей и моторов других конструкций. Четырехцилиндровый двигатель наиболее распространен, является самым простым и надежным. Масса относительно легкая, затраты на ремонт сравнительно низкие. Единственный недостаток – отсутствие в конструкции балансировочных валов. Это лучший ДВС для современных автомобилей даже среднего класса. Существуют и малолитражные рядные моторы с меньшим количеством цилиндров. Как пример – двухцилиндровая экономичная «СеАЗ Ока» 1111.
Шестицилиндровые агрегаты имеют идеальный баланс и здесь недостаток «четверки» компенсируется. Но за баланс приходится платить размерами. Поэтому, несмотря на значительно лучшие по сравнению с «четверкой» характеристики, данные ДВС с рядным расположением цилиндров в двигателе меньше распространены. Коленчатый вал имеет большую длину, стоимость производства довольно высокая, размеры сравнительно большие.
Технический предел
Сейчас не XIX век, но современные силовые агрегаты все так же далеки от технического совершенства. И здесь не помогут даже современные турбины и высокооктановое топливо. КПД ДВС составляет около 20%, а вся прочая энергия тратится на силу трения, инерцию и детонацию. Лишь пятая часть бензина или дизеля пойдет на полезную работу.
Уже выработали основные свойства моторов с наибольшей эффективностью. При этом камеры сгорания и поршневая группа имеет существенно меньшие объемы и размеры. За счет компактных размеров детали имеют меньшую силу инерции – это снижает вероятность повреждения по причине детонации.
Особенности конструкции компактных поршней вносят определенные ограничения. При высокой степени компрессии за счет небольших размеров уменьшается передача давления поршня на шатун. Если поршни имеют больший диаметр, то невозможно получить точную сбалансированную работу из-за огромной сложности. Даже современный мотор «БМВ» обладает этими недостатками, хотя он разрабатывался немецкими инженерами.
Заключение
К сожалению, двигателестроение достигло своего технологического предела. Вряд ли ученые сделают серьезные технические открытия и добьются большей эффективности от двигателя внутреннего сгорания. Так что все надежды на то, что наступит эра электромобилей.
Тест «Кривошипно-шатунный механизм»
Целью настоящих тестов является закрепление студентами знаний, полученных при изучении теоретического материала по теме «Кривошипно-шатунный механизм», входящей в состав МДК 01.02 «Устройство, техническое обслуживание и ремонт автомобильного транспорта» профессии 23.01.03 «Автомеханик».
Тесты составлены в соответствии с требованиями программы профессионального модуля ПМ.01 «Техническое обслуживание и ремонт автомобильного транспорта», по профессии 23.01.03 «Автомеханик», 1 курс.
«Кривошипно-шатунный механизм»
1.Какие детали КШМ относятся к неподвижной группе?
а) блок цилиндров, картер, крышка блок-картера, маховик
б) блок цилиндров, картер, крышка блок-картера, коленчатый вал, гильза цилиндров
в ) блок цилиндров, картер, крышка блок картера, гильза цилиндров, прокладка блок-картера
2.Из каких материалов изготавливают блок-картер современного двигателя?
а) из легированной стали
б) из бронзы или латуни
в) из чугуна или алюминиевых сплавов
3.Чем закрывается блок-картер двигателя сверху и снизу?
а) сверху и снизу специальными кожухами
б) сверху крышкой цилиндров, снизу кожухом маховика
в) сверху крышкой цилиндров, снизу поддоном картера
4.Как закрывается блок цилиндров на двигателе КамАЗ-740 сверху?
а) двумя головками из чугуна
б ) каждый цилиндр отдельной головкой из алюминиевого сплава
в) двумя головками из алюминиевого сплава
г) одной головкой из алюминиевого сплава
5.Какие детали КШМ относятся к подвижной группе?
а) коленчатый вал, маховик, поршень, поршневые кольца, шатун, коренные подшипники
б ) коленчатый вал, маховик, поршень, поршневые кольца, шатун, шатунные подшипники
в) коленчатый вал, маховик, поршень, поршневые кольца, шатун, поддон картера.
6.Что является направляющей для поршня при его перемещениях в двигателе?
б ) гильза цилиндра
в) коленчатый вал
7.Что называют зеркалом цилиндра?
а) установочные пояски гильзы
б) внутреннюю поверхность гильзы цилиндров
в) наружную поверхность гильзы цилиндров.
г) специальное устройство на торце гильзы
8.Что означает выражение: «На двигателе установлены мокрые гильзы?»
а) гильза, внутренняя поверхность которой смазывается маслом б) гильза, наружная поверхность которой омывается охлаждающей жидкостью
в) гильза, которая охлаждается воздухом
9.Что такое камера сгорания?
а ) объем между днищем поршня и головкой цилиндра, когда поршень находится в ВМТ
б) весь объем расположенный под поршнем
в) объем, в котором происходят рабочие процессы двигателя.
10.Сколько головок цилиндров имеет двигатель ЗиЛ-508?
11.Как затягивают болты или шпильки крепления головок цилиндров?
а) в такой последовательности как работает двигатель с применением удлинителя ключа
б) затяжку проводят, прилагая к ключу как можно большее усилие
в ) затяжку проводят равномерно в определенной последовательности в 2-3 приема, с определенным усилием
12.Почему головку поршня выполняют меньшего диаметра, чем юбку?
а) для удобства установки компрессионных и маслосъемных колец б) для равномерного распределения давления газов на поршень
в) для предотвращения заклинивания поршня при нагреве его во время работы
13.Из какого материала изготавливают поршни?
а) из бронзового сплава
б) из алюминиевого сплава
14.Каким способом фиксируется поршневой палец в поршне?
а ) стопорными кольцами
б) стопорными штифтами
в) установочными болтами
15.По назначению поршневые кольца делятся на:
а) уплотнительные и маслосъемные
б) компрессионные и уплотнительные
в) к омпрессионные и маслосъемные.
г) уплотнительные и стопорные
16.Какое компрессионное кольцо работает в самых тяжелых условиях?
17. Какая деталь соединяет коленчатый вал двигателя с поршнем?
А поршневой палец
в) шатунный подшипник.
18. Сколько шатунов крепится на 1 шатунной шейке коленчатого вала 8-ми цилиндрового V -образного двигателя?
19. Рядный четырехцилиндровый двигатель имеет коленчатый вал на котором
а) 4коренных и 4шатунных шеек
б ) 5коренных и 4шатунных шеек
в) 4коренных и 5шатунных шеек
г) 5коренных и 5шатунных шеек.
20. Для чего предназначена нижняя головка шатуна с крышкой?
а) для соединения шатуна с поршнем
б) для соединения шатуна с коленчатым валом
в) для соединения шатуна с поршневым пальцем.
Критерии оценок тестирования:
Оценка «отлично» 18-20 правильных ответов из 20 предложенных вопросов;
Оценка «хорошо» 14-17 правильных ответов из 20 предложенных вопросов;
Оценка «удовлетворительно» 10-13 правильных ответов из 20 предложенных вопросов;
Оценка неудовлетворительно» 0-9 правильных ответов из 20 предложенных вопросов.
Список литературы
Кузнецов А.С. Техническое обслуживание и ремонт автомобилей: в 2 ч. – учебник для нач. проф. образования / А.С. Кузнецов. — М.: Издательский центр «Академия», 2012.
Кузнецов А.С. Слесарь по ремонту автомобилей (моторист): учеб. пособие для нач. проф. образования / А.С. Кузнецов. – 8-е изд., стер. – М.: Издательский центр «Академия», 2013.
Автомеханик / сост. А.А. Ханников. – 2-е изд. – Минск: Современная школа, 2010.
Виноградов В.М. Техническое обслуживание и ремонт автомобилей: Основные и вспомогательные технологические процессы: Лабораторный практикум: учеб. пособие для студ. учреждений сред. проф. образования / В.М. Виноградов, О.В. Храмцова. – 3-е изд., стер. – М.: Издательский центр «Академия», 2012.
Петросов В.В. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.В. Петросов. – М.: Издательский центр «Академия», 2005.
Карагодин В.И. Ремонт автомобилей и двигателей: Учебник для студ. Учреждений сред. Проф. Образования / В.И. Карагодин, Н.Н. Митрохин. – 3-е изд., стер. – М.: Издательский центр «Академия», 2005.
Коробейчик А.В. к-68 Ремонт автомобилей / Серия «Библиотека автомобилиста». Ростов н/Д: «Феникс», 2004.
Коробейчик А.В. К-66 Ремонт автомобилей. Практический курс / Серия «Библиотека автомобилиста». – Ростов н/Д: «Феникс», 2004.
Чумаченко Ю.Т., Рассанов Б.Б. Автомобильный практикум: Учебное пособие к выполнению лабораторно-практических работ. Изд. 2-е, доп. – Ростов н/Д: Феникс, 2003.
Слон Ю.М. С-48 Автомеханик / Серия «Учебники, учебные пособия». – Ростов н/Д: «Феникс», 2003.
Жолобов Л.А., Конаков А.М. Ж-79 Устройство и техническое обслуживание автомобилей категорий «В» и «С» на примере ВАЗ-2110, ЗИЛ-5301 «Бычок». Серия «Библиотека автомобилиста». – Ростов-на-Дону: «Феникс», 2002.
Устройство и принцип работы кривошипно-шатунного механизма двигателя
Кривошипно-шатунный механизм двигателя преобразует возвратно-поступательное движение поршней (от энергии сгорания топливной смеси) во вращательное движение коленчатого вала и наоборот. Это технически сложный механизм, составляющий основу ДВС. В статье подробно рассмотрим устройство и особенности работы КШМ.
Краткая история возникновения
Первые свидетельства о применении кривошипа найдены ещё в III веке нашей эры, в Римской Империи и Византии в VI веке нашей эры. Ярким примером является пилорама из Иераполиса, на которой был применен коленчатый вал. Металлический кривошип был найден в римском городе Августа-Раурика на территории современной Швейцарии. Как бы то ни было, запатентовал изобретение некий Джеймс Пакард в 1780 году, хотя свидетельства его изобретения были найдены еще в древности.
Подвижные и неподвижные части КШМ
Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:
- поршни и поршневые кольца;
- шатуны;
- поршневые пальцы;
- коленчатый вал;
- маховик.
Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:
- блок цилиндров;
- головка блока цилиндров;
- картер;
- поддон картера;
- крепежные детали и подшипники.
Картер и поддон картера двигателя
Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.
Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.
Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.
Расположение и число цилиндров
На сегодняшний день существуют следующие наиболее популярные схемы:
- рядное четырех- или шестицилиндровое положение;
- V-образное шестицилиндровое положение под углом 90°;
- VR-образное положение под меньшим углом;
- оппозитное положение (поршни двигаются навстречу друг другу с разных сторон);
- W-образное положение с 12 цилиндрами.
В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.
Головка блока цилиндров
К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость – камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.
Цилиндры
В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.
Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.
Кривошипно-шатунный механизм
Основными рабочими компонентами КШМ являются коленчатый вал, поршни с шатунами и маховик.
Поршень
Движение поршня в цилиндре происходит в результате сгорания топливовоздушной смеси. Возникает давление, которое воздействует на днище поршня. В разных типах двигателей оно может отличаться по своей форме. В бензиновых изначально днище было плоским, затем стали применять вогнутые конструкции с проточками под клапаны. В дизельных моторах в камере сгорания сжимается изначально не топливо, а воздух. Поэтому днище поршня имеет также вогнутую форму, которая и образует камеру сгорания.
Форма днища имеет большое значение для формирования правильного факела сгорания топливовоздушной смеси.
Остальная часть поршня называется юбкой. Это своего рода направляющая, которая движется в цилиндре. Нижняя часть поршня или юбки сделана так, чтобы она не соприкасалась с шатуном во время его движения.
На боковой поверхности поршней выполнены канавки или проточки под поршневые кольца. Сверху располагаются два или три компрессионных кольца. Они необходимы для создания компрессии, то есть препятствуют проникновению газов между стенками цилиндра и поршнем. Кольца прижимаются к зеркалу, уменьшая зазор. Снизу расположен паз под маслосъёмное кольцо. Оно необходимо для снятия излишков масла со стенок цилиндра, чтобы то не проникало в камеру сгорания.
Поршневые кольца, особенно компрессионные, работают при постоянных нагрузках и высокой температуре. Для их изготовления применяется высокопрочные материалы типа легированного чугуна, который покрывают пористым хромом.
Поршневой палец и шатун
Шатун крепится к поршню при помощи поршневого пальца. Он представляет собой цельную или полую деталь цилиндрической формы. Палец устанавливается в отверстие в поршне и в верхней головке шатуна.
Существуют два типа крепления пальца:
- с фиксированной посадкой;
- с плавающей посадкой.
Наиболее распространен так называемый «плавающий палец». Для его фиксации используются стопорные кольца. Фиксированный палец устанавливается с натягом. Как правило, используется тепловая посадка.
Шатун, в свою очередь, соединяет коленчатый вал и поршень и создает вращательные движения. При этом возвратно-поступательные движения шатуна описывают восьмерку. Он состоит из нескольких элементов:
- стержня или основы;
- поршневой головки (верхней);
- кривошипной головки (нижней).
Для уменьшения трения и смазки соприкасающихся деталей в поршневой головке запрессовывается бронзовая втулка. Кривошипная головка выполнена разборной, чтобы обеспечить возможность сборки механизма. Детали точно подогнаны друг к другу и крепятся с помощью болтов и контргаек. Чтобы уменьшить трение, устанавливаются шатунные подшипники скольжения. Они выполнены в форме двух стальных вкладышей с замками. По масляным канавкам осуществляется подвод масла. Подшипники с высокой точностью подогнаны под размер соединения.
Вопреки расхожему мнению, вкладыши удерживаются от проворота не за счет замков, а из-за возникающей силы трения между их внешней поверхностью и головкой шатуна. Поэтому при установке внешнюю часть подшипника скольжения нельзя смазывать маслом.
Коленчатый вал
Коленчатый вал является сложной по устройству и изготовлению деталью. Он принимает на себя крутящий момент, давление и другие нагрузки, поэтому выполнен из высокопрочной стали или чугуна. Коленвал передает вращение от поршней на трансмиссию и другие элементы автомобиля (например, приводной шкив).
Коленчатый вал состоит из нескольких основных элементов:
- коренные шейки;
- шатунные шейки;
- противовесы;
- щеки;
- хвостовик;
- фланец маховика.
Конструкция коленвала во многом будет зависеть от количества цилиндров в двигателе. В простом рядном четырехцилиндровом двигателе на коленчатом валу имеются четыре шатунных шейки, на которых устанавливаются шатуны с поршнями. Пять коренных шеек расположены по центральной оси вала. Они устанавливаются в опоры блока цилиндров или картера на подшипники скольжения (вкладыши). Сверху коренные шейки закрываются крышками на болтах. Соединение образует П-образную форму.
Специально обработанное место опоры под установку коренной шейки с вкладышем называется постелью.
Коренные и шатунные шейки соединены так называемыми щеками. Противовесы обеспечивают гашение излишних колебаний и обеспечивают равномерное движение коленчатого вала.
Шейки коленвала термически обработаны и отполированы, что обеспечивает высокую прочность и точность посадки. Коленчатый вал также имеет очень точную балансировку и центровку для равномерного распределения всех действующих на него сил. В районе центральной коренной шейки, по бокам от опоры, устанавливаются упорные полукольца. Они необходимы для компенсации осевых перемещений.
На хвостовик коленвала крепятся шестерни (звездочки) привода ГРМ, а также приводной шкив навесного оборудования двигателя.
Маховик
На задней части вала имеется фланец, к которому крепится маховик. Это чугунная деталь, представляющая собой массивный диск. Благодаря своей массе маховик создает необходимую инерцию для работы КШМ, а также обеспечивает равномерную передачу крутящего момента на трансмиссию. На ободе маховика выполнен зубчатый венец для соединения с шестерней стартера. Именно маховик раскручивает коленвал и приводит в движение поршни в момент запуска двигателя.
Кривошипно-шатунный механизм, конструкция и форма коленчатого вала долгие годы остаются неизменными. В основном происходят только небольшие конструктивные доработки, направленные на снижение веса, сил инерции и трения.