Узел впрыска 130060 что это значит
Перейти к содержимому

Узел впрыска 130060 что это значит

  • автор:

Термопластавтоматы Chen Hsong

Конструкция термопластавтомата – устройство инжекционно-литьевой машины

Конструкция термопластавтомата – устройство инжекционно-литьевой машины

Термопластавтомат или инжекционно-литьевая машина – это сложное технологическое оборудование , состоящее из рабочих узлов, исполнительных механизмов и блока управления, а также имеющее температурные, скоростные, нагрузочные и др. параметры.
Общую конструкцию термопластавтомата можно представить следующим образом:

  • узел впрыска
  • узел смыкания
  • основание
  • система приводных механизмов
  • контроллер

Узел впрыска осуществляет загрузку материала, его расплав и подачу к узлу смыкания. В состав узла впрыска входит загрузочный бункер, материальный цилиндр, нагреватели, шнек, сопло. Загрузка полимерного материала осуществляется через загрузочный бункер, далее он поступает в материальный цилиндр, потом вращательными движениями шнека происходит транспортировка материала к соплу. На этом пути материал нагревается и переходит в вязкотекучее состояние.

В задачу узла смыкания входит закрытие и раскрытие литьевой формы, создание усилия, необходимого для сохранения формы в закрытом виде. Нужное усилие может быть создано под действием колено-рычажного или гидравлического механизма, а также их комбинации. Конструкция узла смыкания также должна обеспечивать простое извлечение готового изделия.

Основание термопластавтомата – неподвижная часть станка, необходимая для крепления рабочих узлов машины. Оно должно отвечать таким требованиям как жесткость, виброустойчивость, прочность, износостойкость.

Управление работой термопластавтомата происходит с помощью электронного контроллера .

Узел впрыска

Наибольшую популярность в использовании при литье пластмасс под давлением получили узлы впрыска шнекового типа. Они обладают хорошими свойствами пластикации и удобством в работе. Рассмотрим устройство шнекового узла впрыска более подробно.

КонструкцияТПА

1 – загрузочный бункер, 2 – материальный цилиндр, 3 – шнек, 4 – сопло, 5 – литьевая форма, 6 – литниковое отверстие, 7 – привод вращательного движения шнека, 8 – привод возвратно-поступательного движения шнека, 9 – привод подвода материального цилиндра.

Загрузочный бункер

Загрузочный бункер обеспечивает непрерывную подачу гранулированного или порошкообразного материала в узел впрыска. Корпус бункера устанавливается над загрузочным отверстием материального цилиндра. В нижней части бункера имеется заслонка, которая используется в случае необходимости прекратить подачу материала.

Материальный цилиндр

Материальный цилиндр – это прямой металлический цилиндр, внутри которого находится шнек. Материальный цилиндр условно делится на две зоны – зона загрузки и зона пластикации.
В зоне загрузки осуществляется подача материала на шнек, а в зоне пластикации происходит плавление полимерного материала. По всей длине зоны пластикации на цилиндре установлены кольцевые нагреватели, количество которых зависит от соотношения длина/диаметр шнека и специфике термопластавтомата. Каждый нагреватель отвечает за свою зону нагрева, при этом температура каждой зоны регулируется отдельно.

Шнек является основным рабочим инструментом узла впрыска. Он отвечает за транспортировку пластической массы в материальном цилиндре от зоны загрузки к соплу, при этом обеспечивая ее перемешивание, сжатие и гомогенизацию, а также создает необходимое для впрыска давление.
Основным параметром шнека является соотношение длины рабочей части к наружному диаметру шнека.
Длину рабочей части шнека можно разделить на три зоны – загрузка, пластикация, дозирование. В зависимости от специфики литья под давлением существуют различные модификации шнека с разным соотношением длины зон, но для широкого применения используются универсальные шнеки.

Сопло

Главные функции сопла – это впрыск расплавленного материала в пресс-форму и предотвращение подтекания расплава. Для максимально плотного прилегания сопла к литниковой втулке пресс-формы, наконечник сопла имеет конусообразную форму.

Привод

Чтобы привести шнек в движение необходимо создать крутящий момент, для этих целей на термопластавтомате установлен привод шнека. В конструкциях разных ТПА используются разные системы приводов – гидравлические, гидромеханические и электрические.
Гидравлическая система с насосом и системой регулирования с обратной связью обеспечивает точное управление подачей насоса и давлением рабочей жидкости. Это позволяет стабильно управлять скоростями перемещения механизмов независимо от температуры масла, приводит к уменьшению затрат на обслуживание, снижению энергопотребления, повышению надежности и простоты обслуживания.
Электрический привод обеспечивается двумя электродвигателями, способными создавать большой крутящий момент при регулируемой небольшой частоте вращения вала.
Также существуют ТПА с сочетанием гидравлического и электромеханического привода: гидромеханический привод со встроенным редуктором, с выносным редуктором и др.

Кроме привода шнека большинство машин имеет отдельный привод для подвода к форме узла впрыска. При этом существует два варианта:

  • узел впрыска целиком передвигается на салазках по направляющим, установленным на основании термопластавтомата
  • узел закреплен на колоннах, которые выполняют функцию направляющих при движении узла.

Как правило, привод движения узла впрыска обеспечивается одним или двумя гидроцилиндрами. Исключением являются только ТПА с электрическим приводом.

Узел смыкания

Функциями узла смыкания являются:

  • Обеспечение плотного смыкания обеих частей пресс-формы на этапе впрыска расплава
  • Выдержка отливки под давлением
  • Размыкание формы и извлечение готового изделия

Надежное запирание пресс-формы является ключевым параметром для получения качественной отливки. Также играет роль скорость движения формы и качество извлечения готового изделия.

В конструкцию узла смыкания входят: колонны, плиты (подвижная плита и неподвижная плита), устройство обеспечивающее движение подвижной плиты и надежное запирание формы, устройство обеспечивающее движение выталкивателей.

По виду привода все конструкции узлов смыкания форм можно разделить на гидравлические, пневматические, гидромеханические, пневмомеханические и механические (полностью электрические).

1 – передняя неподвижная плита, 2 – задняя неподвижная плита, 3 – привод, 4 – шток, 5 – подвижная плита, 6 – полуформа, 7 – направляющая колонна.

Колонны

Колонны выполняют роль направляющих, по которым перемещается подвижная плита с установленной на ней полуформой, а также на них замыкается усилие, которое возникает при запирании пресс-формы и выдержки под давлением. Направляющие колонны представляют собой прочные стальные стержни, с минимальной чувствительностью к переменным нагрузкам и пульсациям.
Узел смыкания термопластавтомата обычно оснащен двумя или четырьмя колоннами, также существуют и бесколонные узлы смыкания. Двухколонные узлы смыкания чаще используются на машинах малой мощности, а в бесколонных машинах усилие замыкается в С образных рамах.

Плиты

Плиты необходимы для монтажа пресс-формы. Полуформа с литниковым каналом устанавливается на неподвижной плите, а полуформа с выталкивателями – на подвижной. Плиты являются наиболее нагруженной частью узла смыкания, поэтому чаще всего изготавливаются из стали. Плоскости подвижной и неподвижной плит должны быть строго параллельными, это имеет большое значение для снижения износа направляющих колонн и для обеспечения равномерного распределения нагрузки.
Конструкция плит определяется системой запирания и комплектацией ТПА.

Устройство запирания пресс-формы

На термопластавтоматах большой мощности преимущественно используют гидравлические двухступенчатые устройства запирания пресс-формы, в машинах средней мощности применение двухступенчатых гидравлических устройств не превышает 10—15 %. На ТПА малой и средней мощности преобладают гидромеханические и механические устройства смыкания.

Устройство выталкивания

Для того, чтобы станок для литья пластмасс мог работать в автоматическом режиме, литьевая форма должна быть оборудована системой выталкивания готовой продукции. Движения выталкивателей обеспечивается приводными устройствами. В простейшем варианте — это регулируемые упоры для хвостовиков литьевых форм, в современных конструкциях ТПА предпочтение отдается механическим или гидравлическим устройствам.

Узел впрыска 130060 что это значит

Подшипник роликовый радиальный-упорный 130060/130120C

Импортный роликовый радиальный-упорный подшипник с маркировкой 130060/130120C.
Однорядный, 130060/130120 — Основное конструктивное исполнение.
Размер подшипника: 60*120*32 мм.

  1. Стандарт качества Стандарт: ISO
  2. Производители Бренд: Gamet
  3. Внутренний диаметр Внутренний диаметр: 60 мм
  4. Наружный диаметр Наружный диаметр: 120 мм
  5. Ширина Ширина: 32 мм
  6. Масса Масса: 1.365 кг

Чертеж подшипника 130060/130120C

Чертеж подшипника 130060/130120C

Стоимость подшипника отправляется по запросу

Обратите внимание!

Если вас интересует покупка подшипника 130060/130120C, его цена, наличие, срок поставки, модификации и аналоги.

Вы можете связаться с нами по телефону: +7 (495) 255-13-10

или отправьте заявку на почту: zakaz@detmeh.ru

Таблица модификаций подшипника 130060/130120C

Номер Технические требования d,мм D,мм B,мм m,кг
130060/130120 60 120 32 1.315

Модификации подшипника 130060/130120C — это разновидности одного и того же подшипника в рамках производителя, главными отличиями являются методы контроля и технические требования. Основное обозначение содержащее посадочные размеры (d,D,B) не изменяется. Если модификация отличается методами контроля, добавляется префикс, если техническими требованиями, суффиксы.

У модификаций подшипников методы контроля бывают разные:

  1. Категория
  2. Ряд момента трения
  3. Группа радиального зазора
  4. Класс точности

Так же могут отличаться технические требования:

  1. Увеличенная грузоподъёмность
  2. Изменения конструктивных решений
  3. Модифицированный контакт
  4. Нестандартные материалы
  5. Специальные технические условия
  6. Материал и конструкция сепараторов подшипника
  7. Материалы колец и тел качения
  8. Температура отпуска и рабочая температура
  9. Марка смазки
  10. Вибрация и шумность
  11. Частота вращения предельная при пластичной смазке и жидкой
  12. Максимальная эксплуатационная нагрузка
  13. Уровень защиты

Таблица взаимозаменяемостей подшипника 130060/130120C

Номер d,мм D,мм B,мм Условие Отличия Различия
130060/130120 60 120 32
130060/130120P 60 120 32

Взаимозаменяемость подшипника 130060/130120C делится на несколько основных типов: полная (равнозначная) и односторонняя (ограниченная).
Полная – это замена требуемого подшипника аналогом другого производителя.
Односторонняя – это когда замена возможна только в одном направлении, а в обратном недопустима.
Для применения в бытовых условиях, не требуют точного подбора соответствий, достаточно выбрать из широкого ряда доступных модификаций или аналогов. В других случаях для замены может быть выбран аналог или подходяшая модификация.

Таблица размеров и характеристик подшипника 130060/130120C

В таблице приведены основные размеры подшипника 130060/130120C, технические характеристики и номинальные значения, определяющие уровень соответствия данного подшипника для выполнения требуемых конструктивных решений.

Производитель Gamet — подшипник 130060/130120C

Основной тип — роликовый радиальный-упорный;

Тела качения — ролики;

Нагрузка — радиальная и осевая;

Размеры. мм — 60x120x29.79;

Размер (F) — 5.56 мм;

Размер (R) — 2.5 мм;

Размер сопряженных деталей (da) — 84;

Базовый рейтинг за 10000 часов при 500 вращений в минуту осевой — 1100 dan;

Количество дорожек качения — 1;

Размер (C1) — 5.55 мм;

Резьба (G) — 11.11 мм;

Размер (J) — 125.55 мм;

Габаритные и посадочные размеры:

Внутренний диаметр — 60 мм;

Внешний диаметр — 120 мм;

Высота. мм — 29.79;

Ширина рабочая (T) — 29.79 мм;

Ширина (высота) (B) — 32 мм;

Ширина наружной обоймы (C) — 24.23 мм;

Статическая жесткость радиальная — 82 dan;

Частота вращения предельная — 5700 об/мин;

Статическая жесткость осевая — 12 dan;

Краткая информация о бренде Gamet

Компания Gamet Bearings с 1956 года производит высокоточные конические роликоподшипники на своем заводе в Колчестере . Изначально созданная для обслуживания станкостроения, компания Gamet расширила свою деятельность в других отраслях промышленности, где предъявляются высокие требования к точности подшипников. К ним относятся покрытие материалов, фотоэмульсии или клеи, а также полиграфия и упаковка.

Как проверить форсунки не снимая с двигателя

Неисправности инжектора (форсунок) встречаются как на дизельных, так и на бензиновых двигателях. В схеме устройства системы питания инжекторного двигателя форсунка является элементом, который отвечает за впрыск распыленной порции топлива в камеру сгорания под определенным давлением.

Точное дозирование, герметичность и своевременное срабатывание инжекторной форсунки обеспечивают устойчивую и исправную работу двигателя на всех режимах его работы. Если форсунка «льет» (пропускает лишнее топливо в момент, когда его подача не требуется), снижается эффективность распыла горючего (нарушается форма факела) и возникают другие неисправности инжектора, тогда двигатель начинает дымить серым или черным дымом, теряет мощность, расходует много топлива и т.п.

Устройство и принцип работы

Главная функция системы топливной подачи — впрыск горючего в определённых дозах под давлением.

Различают две основные разновидности форсунок:

В стандартной дизельной форсунке распылитель является главной деталью. Он может иметь несколько отверстий, по-разному регулироваться и подавать солярку. Например, простые дизельные силовые агрегаты оснащаются элементами с однодырочным распылителем и иглой. А вот двигатели типа GDI оснащены распылителями со множеством отверстий, как правило, от 2 до 6.

Обычную работу форсунок можно представить себе так. К ТНВД из бака поступает солярка под незначительным напором. Затем ТНВД последовательно нагнетает топливо уже под сильным давлением к элементам впрыска. Они открываются под действием давления. Как только напор падает, отключается и впрыск дизеля.

Электроуправляемые форсунки созданы в результате прогресса топливных систем дизеля. Здесь солярка подаётся в цилиндры по тому же принципу, только распылители открываются не под действием давления. Управляет всем этим процессом электромагнитный клапан. Он не сам по себе, а контролируется непосредственно ЭБУ автомобиля. Без соответствующего сигнала оттуда топливо в распылитель не попадает.

Электромеханическое управление имеет массу преимуществ. Так, в форсунках дизеля Common Rail, за один цикл может происходить до 7 впрысков, что априори повышает мощность двигателя. Благодаря высокоточному распределению в таких системах, горючая смесь равномерно дозируется, эффективнее распыляется и сгорает.

Также с недавних пор популярны системы «насос-форсунка». Здесь нет ТНВД, на каждый цилиндр отдельно имеется собственный распылитель.

Что указывает на возможные проблемы с инжектором

Сразу отметим, что причин нестабильной работы двигателя может быть много, начиная от забитого топливного фильтра, поломки бензонасоса, вышедшей из строя свечи зажигания или неисправной катушки до потери компрессии, проблем с ГРМ и т.д. Наряду с этим одним из главных признаков неисправности форсунок является затрудненный пуск двигателя, особенно «на холодную», а также расход бензина или солярки (зависимо от типа двигателя), который заметно увеличивается. Еще необходимо отметить неустойчивую работу ДВС в режиме холостого хода, похожую на так называемое «троение» двигателя.

При езде возможно достаточно частое проявление одного или сразу нескольких симптомов:

  • наличие рывков, сильно замедленны реакции при нажатии на педаль газа;
  • явные провалы и потеря динамики при попытках резкого ускорения;
  • машина может дергаться на ходу, при сбросе газа, а также после смены режима нагрузки на мотор;

Необходимо добавить, что подобную неисправность необходимо устранять безотлагательно, так как проблемы с инжектором негативно сказываются не только на ресурсе двигателя и трансмиссии, но и на общей безопасности движения. На автомобиле с неисправными форсунками водитель может испытать серьезные трудности при обгоне, на крутых подъемах и т.п.

Давление форсунок дизельных двигателей

Чем выше давление форсунок дизельных двигателей, тем тоньше распыливается солярка. Так, двигатель GDI имеет среднее давление инжектора, равное 1000-2050 бара. Кроме того, в зависимости от качества распылителя и топливной системы может быть разным время впрыска — от 1 до 2 миллисекунд.

Грамотный уход за дизелем подразумевает в первую очередь регулировку давления начала впрыска. Производится это на специальном стенде, настраивается винтом при снятом колпаке форсунки и отвёрнутой контргайке. Давление будет повышаться при ввёртывании винта, и понижаться — при откручивании.

Ниже приведены примерные показания стандартного давления различных систем:

  • классический инжектор — через ТНВД поступает 400-1000 кг/см2;
  • Коммон Райл — через ТНВД обеспечивается до 1600 кг/см2;
  • насос-форсунки — 1200-2050 кг/см2.

Проверка форсунок дизельного двигателя своими руками

Обычный способ диагностики на засорение форсунок проводится так:

  • повысить до предела обороты двигателя на холостом ходу;
  • ослабляя гайки в местах фиксации рампы высокого давления, поочерёдно деактивировать форсунки;
  • прислушаться к работе мотора.

Если отключить исправную форсунку, силовой агрегат начнёт барахлить. И наоборот, если отсоединить неисправный элемент впрыска, изменений наблюдаться не будет. Кроме того, проверить элементы впрыска можно и по давлению. Надо прощупать топливопроводы на наличие толчков или повышение температуры. Засорённый штуцер будет горячим, так как ТНВД постоянно нагнетает сюда горючее, но в силу забитости канала оно не проходит.

Следующий вариант проверки — через слив в обратку. Неисправная форсунка будет скидывать в систему обратки больше топлива, чем нужно. ТНВД из-за этого теряет способность выдавать нужное рабочее давление, что становится причиной сложного запуска и плохой работы мотора.

Перед диагностикой этого типа нужно подготовить следующие инструменты:

  • медицинские шприцы на 20 мл;
  • систему капельниц.

Как правило, чтобы ускорить процесс работы, подготавливается система капельниц, а не один шприц с трубкой. Так удаётся разом проверить все форсунки. Из шприцов должны быть вынуты поршни, трубки капельницы подсоединены к горлышкам.

Найти проблемную форсунку можно так:

  • подключить систему капельниц со шприцами к обратным сливам форсунок — штатные провода нужно снять;
  • завести мотор;
  • подождать, пока внутрь шприца наберётся определённое количество солярки.

Вот какие выводы делаются после этого:

  • форсунка считается полностью рабочей, если за две минуты в шприц не поступило топливо или количество горючего составило 2-3 мл;
  • частично неисправная, требующая ремонта, если объём солярки превысил 10-15 мл;
  • полностью неисправная, требующая замены, если количество слива превысило 20 мл.

Несмотря на широкую популярность данных способов проверки среди дизелистов, без гидравлического оборудования полноценную картину происходящего увидеть крайне сложно. В действительности объём сбрасываемого форсункой топлива зависит от многого. По этой причине методы диагностики путем расчёта количества обратного слива или отключения позволят судить лишь о пропускных способностях распылителя.

Как самостоятельно почистить устройство подачи топлива

Тот же стенд имеет функцию очистки форсунок. Но при желании это можно сделать и в гаражных условиях. Используется стандартная чистящая жидкость и несложное приспособление, собранное из подручных средств.

Самодельная установка представляет собой автомобильный электрический бензонасос, помещённый в сосуд с очистителем инжекторов. Шланг от насоса подсоединяется к входному штуцеру форсунки, а на её питающий разъём через микропереключатель кнопочного типа подаётся питание от аккумулятора.

Многократно прогнав через распылитель содержащую мощные растворители отложений жидкость можно добиться существенного восстановления распылительных свойств прибора, что станет ясно по изменению формы факела.

Неподдающуюся очистке форсунку придётся заменить, не всегда её дефект связан с загрязнением, возможна коррозия или механический износ.

Чистка форсунки не снимая с двигателя

Очистить инжекторы вполне возможно и без полной разборки узлов впрыска. При этом очищающая жидкость (сольвент) позволяет двигателю работать в процессе промывки.

Растворитель отложений подаётся из отдельной установки, промышленной или самодельной, в напорную магистраль рампы. Излишки смеси поступают обратно в расходный бачок через трубопровод обратки.

Данный способ имеет как достоинства, так и недостатки. Преимуществом будет экономия на сборочно-разборочных процедурах, а также неизбежных при этом затратах на расходные материалы и детали. Заодно очистятся и прочие элементы, например клапаны газораспределительного механизма, рампа и регулятор давления. Снимется также нагар с поршней и камеры сгорания.

Недостатком станет недостаточная эффективность раствора, вынужденного сочетать моющие свойства с топливными функциями, а также некоторая рискованность процедуры, когда отмытый шлак путешествует по элементам топливной системы и попадает в масло. Нелегко придётся и катализатору.

Дополнительным неудобством станет также и отсутствие визуального контроля за эффектом очистки. О результатах можно будет судить только по косвенным признакам. Таким образом данный способ можно рекомендовать только как профилактическую процедуру с обязательной заменой масла в двигателе.

Способы проверки форсунки

Чем сложнее применяемая при диагностике аппаратура, тем точнее можно определить причины произошедшего и назначить необходимые меры по устранению проблемы.

Проверка питания

Наиболее простым способом контроля поступающих на разъём инжектора импульсов будет подключение к его питающему контакту светодиодного индикатора.

При вращении вала стартером светодиод должен мигать, что свидетельствует о приблизительной исправности ключей ЭСУД и самом факте её попыток открыть клапаны, хотя поступающие импульсы могут и не иметь достаточной мощности.

Точную информацию могут дать только осциллограф и имитатор нагрузки.

Как измерить сопротивление

Активный характер нагрузки можно проверить с помощью омметра, входящего в состав универсального мультиметра (тестера). Сопротивление обмотки соленоида указывается в паспортных данных форсунки, как и его разброс.

Показание омметра должны подтвердить соответствие данных. Сопротивление измеряется при отсоединённом разъёме между питающим контактом и корпусом.

Но помимо сопротивления обмотка должна обеспечивать нужную добротность и отсутствие короткозамкнутых витков, что простейшими способами не определить, но обрыв или полное замыкание вычислить можно.

Проверка на рампе

Если снять с коллектора рампу с форсунками в сборе, то можно оценить состояние распылителей более точно. Погрузив каждый инжектор в прозрачную пробирку и включив стартёр наблюдать распыление топлива можно визуально.

Факелы должны иметь правильную коническую форму, содержать только неразличимые глазом отдельные капельки бензина, а главное быть одинаковыми по всем подсоединённым форсункам. При отсутствии управляющих импульсов выделения бензина из клапанов быть не должно.

Проверка форсунок на стенде

Самую точную и полную информацию о состоянии распылителей может дать специализированная установка. Форсунки снимаются с двигателя и устанавливаются на стенд.

Прибор имеет несколько режимов работы, один из которых является тестовым. Установка проводит циклирование в различных режимах, собирая выделенное топливо и измеряя его количество. Помимо этого, работа инжекторов видна сквозь прозрачные стенки цилиндров, можно оценить параметры факелов.

Результатом станет появление цифр производительности раздельно по каждому прибору, которые должны соответствовать паспортным данным.

Проверка дизельных форсунок на перелив (слив в обратку)

По мере износа дизельных форсунок со временем возникает проблема, связанная с тем, что топливо из них попадает обратно в систему, из-за чего насос не может нагнетать нужного рабочего давления. Следствием этого может быть проблемы с запуском и работой дизельного двигателя.

Перед проверкой вам необходимо будет купить медицинский шприц объемом 20 мл и систему для капельниц (для подключения шприца вам понадобится трубочка длиной 45 см). Чтобы найти форсунку, которая скидывает в обратку больше топлива, чем ей положено, необходимо воспользоваться следующим алгоритмом действий:

  • вынуть поршень из шприца;
  • на запущенном двигателе с помощью системы подключить шприц к “обратке” форсунки (трубочку вставить в горлышко шприца);
  • в течение двух минут держать шприц, чтобы в него набиралось топливо (при условии что оно будет набираться);
  • повторять процедуру поочередно для всех форсунок либо соорудить систему для всех сразу.

На основании информации о количестве топлива в шприце можно сделать соответствующие выводы:

Проверка перелива в обратку

  • если шприц пустой — значит, форсунка полностью исправна;
  • количество топлива в шприце объемом от 2 до 4 мл также в пределах нормы;
  • в случае, если объем топлива в шприце превышает 10. 15 мл, это означает, что форсунка частично или полностью вышла из строя, и ее необходимо заменить/отремонтировать (если льет 20 мл, то ремонтировать бесполезно, поскольку это говорит об износе седла клапана форсунки), так как она не держит давление топлива.

Однако такая простая проверка без гидростенда и тест плана не дает полной картины. Ведь на самом деле при работе двигателя количество сбрасываемого топлива зависит от многих факторов, она может быть забита и её нужно чистить или она подвисает и требуется в ремонте либо замене. Поэтому данный способ проверки форсунок на дизеле в домашних условиях позволяет лишь судить лишь об их пропускных способностях. В идеале количество пропускаемого ими объема топлива должно быть одинаковым и находиться в пределах до 4 мл за 2 минуты.

Точный объем топлива, которое может подавать в обратную магистраль вы можете найти в мануале своего автомобиля или двигателя.

Для того, чтобы форсунки эксплуатировались как можно дольше, заправляйтесь качественным дизельным топливом. Ведь оно напрямую зависит от на работу всей системы. Кроме этого, ставьте оригинальные топливные фильтры и не забывайте вовремя их менять.

Проверка форсунок с помощью специальных приборов

Более серьезная проверка форсунок дизельного двигателя проводится с помощью прибора под названием максиметр. Под этим названием подразумевается специальная образцовая форсунка с пружиной и шкалой. С их помощью выставляется давление начала впрыска дизельного топлива.

Другой метод проверки — использование контрольной образцовой рабочей форсунки, с которой сравниваются эксплуатируемые в двигателе устройства. Всю диагностику выполняют при запущенном моторе. Алгоритм действий таков:

  • выполняют демонтаж форсунки и топливопровода с двигателя;
  • на свободный штуцер ТНВД подключают тройник;
  • выполняют ослабление накидных гаек на других штуцерах ТНВД (это позволит топливу поступать лишь на одну форсунку);
  • к тройнику подсоединяют контрольную и тестируемую форсунки;
  • активируют декомпрессионый механизм;
  • вращают коленчатый вал.

В идеале контрольная и тестируемая форсунки должны показывать одинаковые результаты в вопросе одновременного начала впрыска топлива. Если есть отклонения — значит, надо регулировать форсунку.

Метод с использованием контрольного образца обычно занимает больше времени, чем использование максиметра. Однако он более точный и надежный. Также можно проверить работу двигателя и форсунок дизельного двигателя и ТНВД на специальном регулировочном стенде. Однако они есть лишь на специализированных СТО.

Возможные неисправности дизельных форсунок

Наиболее частой причиной неисправности является нарушение плотности посадки иглы в направляющей втулке форсунки. Если ее значение уменьшено, то через новый зазор протекает большое количество топлива. В частности, для нового инжектора допускается утечка в объеме не более 4% от рабочего топлива, которое попадает в цилиндр. В целом же, количество топлива из форсунок должно быть одинаковым. Обнаружить утечку топлива на форсунке можно следующим образом:

  • найти информацию о том, какое давление должно быть при открытии иглы в форсунке (для каждого двигателя он будет различным);
  • снять форсунку и установить ее на испытательный стенд;
  • создать заведомо высокое давление на форсунке;
  • с помощью секундомера измерить время, через которое давление упадет на 50 кгс/см2 (50 атмосфер) от рекомендуемого.

Это время также прописано в технической документации к двигателю. Обычно для новых форсунок оно составляет от 15 секунд и более. Если форсунка поношенная, то это время может сократиться до 5 секунд. Если время меньше 5 секунд, значит форсунка уже находится в нерабочем состоянии.

При износе седла клапана форсунки (не держит требуемого давление и происходит чрезмерный слив) ремонт бесполезен, обойдется больше половины стоимости новой.

Иногда дизельный инжектор может давать небольшую или обильную течь горючего. И если во втором случае необходим лишь ремонт и полная замена форсунки, то в первом случае можно обойтись собственным силами. В частности, необходимо притереть иглу к седлу. Ведь основная причина подтекания — нарушение уплотнения на торце иглы (другое название — уплотняющий конус).

Замена одной иглы в форсунке без замены направляющей втулки не рекомендуется, поскольку они подгоняются друг под друга с высокой точностью.

Для удаления подтекания дизельной форсунки зачастую используют тонкую шлифовальную пасту ГОИ, которую разводят с керосином. Во время притирки необходимо следить за тем, чтобы паста не попала в зазор между иглой и втулкой. По окончании работ все элементы промывают в керосине или солярке без примесей. После этого нужно обдуть их сжатым воздухом из компрессора. После сборки вновь проверить на наличие течи.

Технология COMMON RAIL BOSCH

После получения технологии прямого впрыска дизельного двигателя с системой COMMON RAIL компании ROBERT BOSCH Gmbh удалось с успехом разработать эффективную схему контроля впрыска, которая получила наибольшее распространение и в мире, благодаря своей простоте и надежности. Системы COMMON RAIL от BOSCH классифицируются по типам насоса высокого давления и могут иметь несколько разновидностей в зависимости от задач двигателя. Системы управления топливоподачей BOSCH могут быть трех типов: с регулированием давления в рампе на стороне высокого давления, регулирование потока топлива на стороне высокого давления при выходе топлива из ТНВД и так называемый «двойной контроль», когда регулировка происходит с помощью датчика контроля потока в ТНВД и посредством регулятора давления на топливной рампе с помощью дозирующего клапана на линии низкого давления на входе в ТНВД.

Система Bosch CP1

Насосы Bosch первого поколения типа CP1 приводятся в работу с помощью вала, соединенного с распредвалом двигателя. Они могут иметь модификации CP1K — компактный дизайн и CP1S — стандартный дизайн, но с регулятором давления на корпусе насоса. Система характеризуется наличием погружного электрического топливного насоса, который подает топливо к ТНВД под давлением 2,6 бар и с производительностью 160 л/час (может меняться в зависимости от модели автомобиля). Электрический топливный насос постоянно активирован при работающем двигателе. Лишнее топливо отводится через предохранительный клапан на блоке топливного фильтра в топливный бак. Блок топливного насоса и указателя уровня топлива оснащен еще одним предохранительным клапаном. При заблокированном топливопроводе предохранительный клапан открывается и подаваемое топливо снова возвращается напрямую в топливный бак. Это позволяет избежать повреждений топливной системы.

ТНВД системы СР1 имеет три плунжера, расположенных радиально к друг другу под углом в 120 градусов. В центре корпуса топливного насоса установлен приводной вал. Привод плунжерных пар осуществляется посредством эксцентрикового кулачка напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода топливного насоса соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. ТНВД СР1 не имеет клапана дозирования топлива. Давление в топливной рампе регулируется исключительно посредством регулятора давления топлива (DRV). ТНВД должен создавать минимальное давление в рампе на уровне 170-200 бар на холостом ходе и 1350 бар на максимальных оборотах. После входного штуцера на линии низкого давления в ТНВД имеется специальный клапан, который переводит часть топлива для смазки внутренних поверхностей насоса. Пружина клапана настроена так, что если давление в магистрали ниже 0,8 бар, то топливо направляется на смазку и охлаждение насоса и затем сливается в линию обратки. Если давление выше 0,8 бар, то пружина сжимается и большая часть топлива подаётся к плунжерам для сжатия. По мере вращения приводного вала, эксцентрик нажимает на трехгранную втулку, а она надавливает на поршень плунжера. Когда эксцентрик не давит на поршень плунжера, поршень под действием возвратной пружины двигается к центру насоса, создавая разряжение в камере, которое открывает впускной клапан и топливо попадает в камеру. После нажима эксцентрика на поршень, тот двигается вверх, сжимая топливо и высокое давление в камере перекрывает впускной клапан (как только давление станет около 1 бара), одновременно выдвигая шарик контрольного клапан на впуске и выпуская топливо из камеры уже под высоким давлением. После этого движение поршня вниз снова создает разряжение и шарик перекрывает выпускное отверстие и впускной клапан открывается снова. Такт повторяется. Некоторые варианты насоса могут иметь клапан деактивации одного из плунжеров. Причина его использования — снижение нагрузки на ТНВД на малых оборотах, а также быстрое понижение давления в системе при переходе блока управления в аварийный режим. Клапан деактивации состоит из электромагнита и штока, который перекрывает подачу топлива для сжатия. После подачи сигнала с ЭБУ на клапан, соленоид прижимает шток с золотником клапана к впускному отверстию.

Регулятор давления топлива является частью топливной рампы или расположен на корпусе ТНВД. Клапан на насосе располагается после выпускного штуцера подачи топлива в рампу и отводит часть топлива в линию обратки. Клапан состоит из соленоида и подпружиненного штока, который упирается в шарик для перекрытия сливного канала. Открытие форсунок и работа плунжеров приводят к сильным гидравлическим колебаниям топлива. Шарик в клапане призван гасить эти колебания. Если давление в клапане больше 100 бар, то пружина сжимается и топливо утекает в магистраль обратки. Под управлением сигнала частоты с ЭБУ соленоид двигает шток вперед и он перекрывает слив в обратку, повышая давление в линии. Если ЭБУ не управляет клапаном, то давление находится на уровне 100 бар. Если клапан на рампе, то он находится на линии слива топлива в магистраль обратки и регулирует топливо по сигналу частотной модуляции с блока управления двигателем.

Также на рампе устанавливается датчик измерения давления. Он с высокой точностью и за соответственно короткое время измеряет мгновенное давление топлива в рампе и передает в ЭБУ сигнал напряжения, соответствующий имеющемуся давлению. Датчик функционирует вместе с регулятором давления топлива в замкнутом контуре регулирования. Также в рампе может располагаться датчик температуры топлива. Его сопротивление при температуре 25 градусов — 2400 Ом, при температуре 80 градусов — 270 Ом.

Обычно в двигателях с системой Bosch СР1 используются форсунки электромагнитного типа CRI 1 и CRI 2. Принцип работы в следующем:
Топливо из рампы под высоким давлением через трубку направляется к форсунке и далее по топливной галерее в форкамеру распылителя, а также через впускной дроссель в управляющую камеру клапана. Управляющая камера клапана соединена с линией возврата топлива в бак через выпускной дроссель, который может открываться электромагнитным клапаном. В закрытом состоянии (электромагнитный клапан обесточен) выпускной дроссель закрыт шариком клапана, поэтому топливо не может выйти из управляющей камеры клапана. В этом положении в форкамере распылителя и в управляющей камере клапана устанавливается одинаковое давление (баланс давления). На иглу распылителя действует дополнительно усилие собственной пружины, поэтому игла распылителя остается закрытой (гидравлическое давление и усилие пружины иглы распылителя). Топливо не попадает в камеру сгорания. При активации электромагнитного клапана открывается выпускной дроссель. За счет этого возрастает давление в управляющей камере клапана, а также гидравлическое усилие, действующее на управляющий золотник клапана. Как только гидравлическая сила в управляющей камере клапана станет меньше гидравлической силы в форкамере распылителя и пружины иглы распылителя, игла распылителя открывается. Топливо через отверстия распылителя впрыскивается в камеру сгорания. Спустя заданное программой время подача электропитания к электромагнитному клапану прерывается. После этого выпускной дроссель снова закрывается. С закрытием выпускного дросселя в управляющей камере клапана через впускной дроссель восстанавливается давление из топливной рампы. Это повышенное давление с большим усилием воздействует на управляющий золотник клапана. Эта сила и сила упругости пружины иглы распылителя теперь превосходят силу в форкамере распылителя и игла распылителя закрывается. Скорость закрывания иглы распылителя определяется расходом впускного дросселя. Впрыск прекращается, как только игла распылителя достигает своего нижнего упора. Косвенное приведение в действие иглы распылителя посредством системы гидравлического сервопривода применяется, когда усилие, необходимое для быстрого открывания иглы распылителя с помощью электромагнитного клапана, не может быть создано напрямую. Для этого дополнительно к объему впрыскиваемого топлива в возврат топлива через дроссели управляющей камеры подается требуемый «управляющий объем». Дополнительное к управляющему объему имеются объемы утечек на перемещение иглы распылителя и управляющего золотника клапана. Электромагнитные форсунки калибруются во время производства и имеют несколько вариантов кодировки. Ранние версии разделены на классы (например, Х, Y, Z у Hyundai) и в случае замены классы форсунок необходимо комбинировать по определенному принципу. В более поздних системах используется код : 8-значный (ЕВРО IV) или 9-значный (ЕВРО V), который представляет собой поправочный коэффициент для коррекции топлива и выгравирован на поверхности головки топливной форсунки. В случае замены форсунок в память ЭБУ необходимо вводить новый код. Также необходимо вводить коды форсунок при замене ЭБУ на новый в память нового блока.

Система Bosch CP1Н

Система Bosch CP1H относится к второму поколению и стала применяться с 2001 года. В отличие от насосов CP1 в СР1Н на стороне подачи топлива в рампу расположен соленоидный клапан контроля количества топлива, подаваемого из насоса в рампу. Эта конструкция впервые была применена на типе СР3, но добавлена к СР1 для увеличения производительности насоса. Это позволяет увеличить эффективность насоса, понизив температуру топлива, нагрузку и повысив создаваемое давление. Привод топливного насоса осуществляется напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. Топливный насос может вырабатывать максимальное давление топлива от 1600 до 1800 бар. Еще одна особенность системы СР1Н — использование деактиватора одного из плунжеров в случае, если нет необходимости развивать максимальное давление в рампе.

В случае, если в системе не используется погружной электрический насос, ТНВД может быть оборудован подкачивающим насосом шестеренного типа. Основные конструктивные детали – две находящихся в зацеплении шестерни, вращающиеся друг навстречу другу и подающие топливо, защемленное во впадинах между зубьями, из полости всасывания в полость нагнетания. Контактная линия шестерен между полостью всасывания и полостью нагнетания уплотнена, что исключает возможность обратного перетекания топлива. Подача насоса примерно пропорциональна частоте вращения двигателя. В этой связи требуется регулирование подачи / переходного давления. Величина переходного давления, нагнетаемого зубчатыми колесами, зависит от дросселирующих отверстий и их проходного сечения в перепускном дроссельном клапане. Перепускной дроссельный клапан интегрирован в контур низкого давления топливного насоса. Создание высокого давления (до 1800 бар) вызывает высокую температурную нагрузку на отдельные детали топливного насоса. Поэтому для обеспечения выносливости механические детали топливного насоса должны обильно смазываться. Перепускной дроссельный клапан спроектирован так, чтобы при любом режиме эксплуатации обеспечить оптимальное смазывание и, соответственно, охлаждение. При низкой частоте вращения топливного насоса (низкое давление подкачивающего насоса) управляющий золотник лишь немного смещается со своего седла. Потребность в смазке/охлаждении, соответственно, мала. Открывается малая подача топлива через дроссель на конце управляющего золотника для смазки/охлаждения насоса. Некоторые ТНВД могут быть снабжены автоматической вентиляцией (Форд). Через дроссель отводится воздух, который может находиться в топливном насосе. С ростом частоты вращения топливного насоса (ростом давления подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. При растущей частоте вращения топливного насоса требуется усиленное охлаждение топливного насоса. При заданном давлении открывается байпасное охлаждение топливного насоса и расход топливного насоса увеличивается. При высокой частоте вращения топливного насоса (высоком давлении подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. Теперь байпасное охлаждение топливного насоса полностью открыто (максимальное охлаждение). Избыток топлива через байпас обратного потока возвращается в полость всасывания подкачивающего насоса. Таким образом внутреннее давление топливного насоса СР1Н (как и СР1) ограничивается значением 6 бар.

Привод топливного насоса осуществляется от приводного вала, а конструкция, в целом, аналогична CP1. На приводном валу жестко смонтирован эксцентрик, который перемещает три плунжера насоса возвратно-поступательно в соответствии с профилем кулачка эксцентрика. На впускной клапан подается давление топлива от подкачивающего насоса. Если переходное давление превышает внутреннее давление камеры высокого давления (плунжер превышает положение TDC (верхняя мертвая точка)), то впускной клапан открывается. Заполнение камеры высокого давления функционирует комбинировано: С одной стороны, топливо под воздействием переходного давления нагнетается в камеру высокого давления. Давление при этом зависит от проходного сечения клапана дозирования топлива. С другой стороны, топливо при движении плунжера вниз засасывается в камеру высокого давления. Если пройдена BDC (нижняя мертвая точка) плунжера, то впускной клапан закрывается вследствие возросшего давления в камере высокого давления. Топливо больше не может проходить в камеру высокого давления. Как только давление в камере высокого давления превысит давление в топливной рампе, открывается выпускной клапан, и топливо через подсоединение высокого давления нагнетается в топливную рампу (ход подачи). Плунжер насоса подает топливо до тех пор, пока не будет достигнута TDC. Затем давление падает, и выпускной клапан закрывается. Оставшееся топливо более не находится под давлением; плунжер насоса движется вниз. Если давление в камере высокого давления ниже переходного давления, впускной клапан снова открывается, и процесс начинается сначала.

Линия подачи топлива под высоким давлением в рампу имеет ответвление, которое проходит через Клапан регулировки давления для слива лишнего топлива в бак. Клапан установлен или сбоку или позади ТНВД в зависимости от конструкции.

Система Bosch CP3

Система BOSCH CP3 появилась в 2003 году и стала третьим поколением систем BOSCH для прямого впрыска дизельного топлива. Принцип дизайна насоса CP3 идентичен СР1 и СР1Н (технология СР3 использована для насосов СР1Н). Но в этом типе применена новая технология управления давлением: управление осуществляется не в линии высокого давления, а на стороне подачи топлива в ТНВД. Для этого применен новый элемент — клапан контроля количества подаваемого в насос топлива (IMV). Корпус имеет новую форму моноблока со сниженным уровнем трения. Другая отличительная особенность — не прямое воздействие эксцентрика на плунжер, а передача усилия через толкатель, что позволяет увеличить нагрузку и добиться максимального давления в 1800 бар. Причина использования моноблочной систему корпуса в том, что такое исполнение уменьшает число мест в контуре высокого давления, где возможны утечки, и допускает более высокую производительность. Также в насосах типа СР3 применены толкатели со специальной опорой. Поперечные силы, возникающие в результате действия поперечного момента эксцентрика привода, воспринимаются не плунжерами, а специальной опорной втулкой на стенке корпуса насоса. ТНВД этого типа отличается большей стабильностью работы под нагрузкой и способностью противостоять более высокому давлению.

Еще одна из отличительных особенностей системы СР3 — использование механического передающего насоса, расположенного в задней части ТНВД на линии низкого давления. Насос шестеренчатого типа, как у CP1H, но может применяться электрический роторный насос роликового типа, который находится на линии низкого давления. Такой тип насоса включает в себя камеру с внутренним эксцентриком и с установленным в ней ротором и роликами, которые могут перемещаться в прорезях ротора. Вращение ротора вместе с создаваемым давлением топлива заставляют ролики перемещаться на периферию прорези, прижимаясь к рабочим поверхностям. В результате ролики действуют как вращающиеся уплотнители, посредством чего между роликами соседних прорезей и внутренней, рабочей поверхностью корпуса насоса, образуется камера. Создание давления определяется тем, что при закрытии входной серпообразной полости объем камеры постоянно уменьшается, и когда выходное отверстие открывается, топливо течет через электромотор и выходит из штуцера в крышке на нагнетательной стороне насоса.
Шестеренчатый насос является исключительно механическим топливоподкачивающим насосом. Он увеличивает нагнетаемое одним или двумя электрическими топливными насосами в топливном баке давление топлива. Этим гарантируется обеспечение топливом насоса высокого давления во всех режимах работы. В корпусе насоса, который крепится на задней части ТНВД находятся две встречно движущихся шестерни, при чем одна шестерня приводится в действие сквозным приводным валом. Шестерни вращаются, топливо в пространство между зубьями шестерен и подается по топливным магистралям в полость давления. Оттуда оно поступает корпус насоса высокого давления. Зацепление зубьев обоих шестерен исключает обратный отток топлива. Предохранительный клапан открывается при повышении давления топлива в полости давления шестеренчатого насоса свыше 5,5 бар. Топливо откачивается тогда в полость всасывания шестренчатого насоса.

Клапан дозировки топлива встроен в насос высокого давления. Он обеспечивает необходимое регулирование давления топлива в области высокого давления. Клапан дозировки топлива регулирует количество топлива, которое поступает в насос высокого давления. Преимущество системы состоит в том, что насос высокого давления должен создавать только то давление, которое необходимо для рабочей ситуации на данное время. Таким образом, сокращается потребляемая мощность насоса высокого давления и предотвращается ненужный разогрев топлива. В обесточенном состоянии клапан дозировки открыт. Дозирующий плунжер усилием пружины сдвинут в сторону и предоставляет минимальное поперечное сечение к насосу высокого давления. Через него только небольшое количество топлива проходит в камеру сжатия насоса высокого давления. Для увеличения количества подаваемого топлива к насосу высокого давления, клапан дозировки топлива управляется импульсным сигналом (PWM) блока управления дизельной системы впрыска. PWM-сигналом клапан дозировки топлива синхронно закрывается. Благодаря этому за клапаном создается давление, которое воздействует на регулирующий плунжер. Вариацией сигналов изменяется давление и вместе с этим положение плунжера. Давление падает и регулирующий плунжер сдвигается вправо. Это увеличивает подачу топлива к насосу высокого давления. В случае отказа клапана двигатель переходит в аварийный режим и мощность его резко падает.

Принцип создания высокого давления в целом идентичен типу СР1Н. Также на рампе находится датчик измерения давления. В нем находится чувствительный элемент, который состоит из стальной мембраны и тензодатчика. Давление топлива воздействует на чувствительный элемент. При изменении давления изменяется прогиб стальной мембраны и также вместе с этим меняет сопротивление и тензодатчик. Электронный блок обработки данных вычисляет по сопротивлению сигнал напряжения и передает его на блок управления дизельной системы впрыска. C помощью запрограммированных в памяти блока управления характеристик подсчитывается текущее давление топлива. При отказе в работе датчика давления топлива блок управления дизельной системы впрыска подсчитывает значение давления по умолчанию. Мощность падает.

Регулировочный клапан давления топлива находится на топливной рампе. Регулировочным клапаном устанавливается давление топлива в области высокого давления. При этом им управляет блок управления дизельной системы впрыска. В зависимости от режима работы двигателя давление составляет от 230 до 1800 бар. При слишком высоком давлении топлива регулировочный клапан открывается и часть топлива из топливной рампы через обратную магистраль попадает в топливный бак. При слишком низком давлении регулировочный клапан закрывает и герметизирует область высокого давления от обратной магистрали. Если регулировочный клапан не управляется, то игла клапана под действием клапанной пружины придавлена в свое гнездо. Этим область высокого давления отделена от обратной магистрали. Клапанная пружина сконструирована так, что в топливной рампе создается давление топлива приблизительно 80 бар. Если давление топлива в топливной рампе больше усилия клапанной пружины, то регулировочный клапан открывается и топливо течет по обратной магистрали в топливный бак. Для создания рабочего давления от 230 до 1800 бар в топливной рампе, регулировочным клапаном управляет пусковой сигнал (PWM) блока управления дизельной системы впрыска. За счет этого в магнитной катушке возникает магнитное поле. Якорь клапана притягивается и придавливает иглу клапана в ее гнездо. Силе давления топлива в топливной рампе и дополнительно усилию пружины клапана противостоит магнитная сила. В зависимости от нажимного отношения управления, изменяется проходное сечение к магистрали обратного течения и вместе с этим количество возвращающегося топлива. Кроме того, за счет этого выравниваются перепады давления в топливной рампе. При отказе регулировочного клапана давления топлива двигатель не будет работать, поскольку не будет создаваться необходимое для впрыска высокое давление топлива.

На некоторых модификациях системы в цепи низкого давления может находится температурный датчик топлива. По сигналу датчика температуры топлива блок управления дизельной системы подсчитывает плотность топлива. Она является величиной коррекции для подсчета необходимого для впрыска количества топлива, регулировки давления топлива в топливной рампе и для регулировки количества топлива, которое поступает в насос высокого давления. При отказе датчика температуры топлива блок управления дизельной системы подсчитывает постоянное значение по умолчанию. При слишком высокой температуре в подающей магистрали, для защиты насоса высокого давления мощность двигателя ограничивается. Этим также косвенно уменьшается количество сжатого в насосе высокого давления топлива и таким образом температура топлива падает.

Некоторые типы систем имеют клапан постоянного давления. Клапан постоянного давления является абсолютно механическим клапаном. Он находится между обратными магистралями от клапанов впрыска и обратной магистралью топливной системы. Клапан постоянного давления в обратной топливной магистрали со стороны клапанов впрыска поддерживает давление топлива приблизительно на уровне 10 бар. Это давление топлива необходимо для работы клапанов впрыска. При работе двигателя топливо поступает от клапанов впрыска через обратные магистрали к клапану постоянного давления. При давлении топлива свыше 10 бар шарик под усилием пружины поднимается из своего гнезда. Топливо протекает через открывшийся клапан в обратную топливную магистраль к топливному баку.

Еще одна важная отличительная особенность системы CP3 — это применение пьезофорсунок, которые относятся к поколению CRI 3. Скорость включения пьезофорсунок этого типа в 4 раза быстрее, чем у предыдущего поколения элекстромагнитных форсунок CRI 2. Кроме того, технология применения пьезофорсунок по сравнению с электромагнитными клапанами впрыска имеет приблизительно на 75% меньше подвижной массы на игле распылителя. Из этого складываются преимущества очень короткого времени включения, возможности большого количества циклов впрыска в течение рабочего такта и точно дозируемое количество топлива. За счет очень короткого времени включения пьезофорсунок можно гибко и точно управлять фазами и циклами впрыска. Благодаря этому процесс впрыска можно приспособить к соответствующим требованиям условий работы двигателя. В течение каждого процесса впрыска может производиться до пяти частичных циклов впрысков. Перед основным впрыском в камеру сгорания впрыскивается небольшое количество топлива. Это способствует повышению температуры и давления в камере сгорания. За счет этого сокращается задержка самовоспламенения основного впрыска и вместе с этим снижается быстрое возрастание давления и его пик. Следствием этого являются незначительные шумы сгорания топлива и низкий уровень токсичности выхлопных газов. Число, время и количество впрыскиваемого топлива для предварительного впрыска зависят от режима работы двигателя. В холодном двигателе и при низком числе оборотов по шумовым причинам происходят два предварительных впрыска. При более высокой нагрузке и высоком числе оборотов проходит только один предварительный впрыск для уменьшения уровня токсичности выхлопных газов. При полной нагрузке и высоком числе оборотов не происходит предварительного впрыска, поскольку для высокого коэффициента полезного действия должно впрыскиваться большое количество топлива. После предварительного впрыска и короткой паузы в камеру сгорания впрыскивается основное количество топлива. Уровень давления впрыска всего процесса остается примерно равным. Для регенерации сажевого фильтра происходят два пост впрыска. За счет их повышается температура выхлопных газов, которая необходима для сгорания частиц сажи в сажевом фильтре.

Для управления клапаном впрыска применяется пьезопривод. Он находится в корпусе клапана и управляется электрическим соединением блока управления системы впрыска. Пьезопривод имеет высокую скорость включения, он включается за менее чем, десятитысячную долю секунды. Для управления пьезоприводом используется обратный пьезоэлектрический эффект. Пьэзопривод состоит из множества пьезоэлементов, для достижения достаточно большого хода контактов управления клапанами впрыска. При подаче напряжения пьезопривод расширяется до 0,03 мм. (Для сравнения: человеческий волос имеет диаметр приблизительно 0,06 мм). К пьезоприводам подается напряжение от 110 до 148 В. Модуль сопряжения состоит из соединительной и клапанной колбы. Модуль связи действует как гидравлический цилиндр. Он очень быстро гидравлически преобразовывает линейное расширение пьезопривода и приводит в действие клапан переключения. Гидравлической передачей клапан переключения мягко открывается и за счет этого происходит точное управление впрыском. Преимущества гидравлической передачи: незначительная сила трения, амортизация подвижных конструктивных элементов, компенсация изменения длины конструктивных элементов за счет теплового расширения и отсутствие механического воздействия на иглу распылителя. Модуль сопряжения является гидравлической системой, в которой силы соотносятся друг к другу как площади колб. В модуле сопряжения площадь соединительной колбы больше площади клапанной колбы. Клапанная колба приводится, таким образом, в действие силой соединительной колбы. Отношение площади соединительной колбы к площади клапана переключения во много раз больше. За счет этого клапан переключения приводится в действие против давления топливной рампы от модуля сопряжения. Давление топлива в модуле сопряжения поддерживается клапаном постоянного давления в обратной магистрали приблизительно на уровне 10 бар. Это давление топлива служит в качестве воздушной подушки для гидравлической передачи между колбой соединения и клапанной колбой. В состоянии покоя клапан впрыска закрыт. Пьезопривод выключен. В пространстве управления выше иглы распылителя и к клапану переключения подается высокое давление топлива. Клапан переключения за счет высокого давления топлива и усилия пружины клапана переключения прижат в своем гнезде. За счет этого высокое давление топлива отделено от обратной топливной магистрали. Игла распылителя закрывается усилием пружины и высоким давлением топлива в пространстве управления выше распылителя. В обратной топливной магистрали давление топлива составляет приблизительно на уровне 10 бар, которое поддерживается клапаном постоянного давления в обратной магистрали клапанов впрыска. Начало впрыска проводит ЭБУ. При этом он посылает управляющие сигналы на пьезопривод. Пьезопривод расширяется и передает усилие на соединительную колбу. Движением соединительной колбы назад, в модуле сопряжения создается гидравлическое давление, которое через клапанную колбу воздействует на клапан переключения. Клапан переключения открывается гидравлическим усилием модуля сопряжения и освобождает путь высокому давлению топлива в обратную магистраль. Топливо в области управления через сливной дроссель попадает в обратную магистраль. При этом резко падает давление топлива выше иглы распылителя. Игла распылителя поднимается и начинается впрыск. Завершение впрыска происходит, когда блок ЭБУ больше не подает управляющие сигналы на пьезопривод. Пьезопривод возвращается в свое исходное положение. Обе колбы модуля сопряжения двигаются вверх, а клапан переключения прижимается в своем гнезде. За счет этого перекрывается путь высокому давлению топлива к обратной магистрали. Через дроссель подачи топливо поступает в область управления выше иглы распылителя. Давление топлива в области управления снова растет до уровня топливной рампы и закрывает иглу распылителя. Процесс впрыска завершен и клапан впрыска находиться снова в состоянии покоя. Количество впрыскиваемого топлива определяется длительностью нахождения под управлением пьезопривода и давлением топливной рампы. Благодаря быстрым промежуткам включения пьезопривода можно совершить большее число циклов впрыска за рабочий такт и точно определить количество впрыскиваемого топлива.

На каждой форсунке нанесен семизначный код для адаптации. Это значение для адаптации может состоять из букв и/или цифр. Значение (IMA код) определяется при изготовлении клапана впрыска на испытательном стенде. Оно представляет разность заданной величины и описывает этим параметры работы клапана впрыска. C помощью значения IMA ЭБУ дизельной системы впрыска может точно рассчитать необходимое время срабатывания для впрыска топлива через каждый отдельный клапан форсунки. За счет регулировки количества топлива для впрыска выравниваются различные параметры работы форсунок, которые возникают на основе производственных допусков. Целями данных коррекций количества впрыскиваемого топлива являются: сокращение расхода топлива, сокращение количества выхлопных газов, тихая работа двигателя. Насосы типа СР3 используются как на легковых, так и на коммерческих автомобилях. Версии СР3.1

СР3.4 отличаются размером и уровнем давления в зависимости от выполняемой автомобилем задачи. Версия СР3.4 используется только на грузовиках и автобусах. В лёгких грузовиках и коммерческих автомобилях других типов (пикапы) могут также использоваться ТНВД, первоначально спроектированные для легковых автомобилей. Особенностью топливных систем тяжёлых грузовиков, а также грузовиков средней грузоподъёмности, является топливный фильтр, расположенный на стороне давления. Он устанавливается между шестерёнчатым топливоподкачивающим насосом и ТНВД и благодаря большей ёмкости для отсеиваемых частиц, допускает длительный интервал замены фильтрующего элемента. В любом случае ТНВД требует внешнего соединения на впуске топлива, даже если шестерёнчатый топливоподкачивающий насос закреплён на фланце ТНВД.

Система Bosch CP2 / СPN2.2

Насосы типа BOSCH CP2 используются только в коммерческих автомобилях. Их отличие — два вертикально расположенных в линию качающих плунжера. В некоторых редких случаях применялись насосы с четырьмя качающими элементами. Причина использования схемы с вертикальными плунжерами в возможности взаимозаменять ТНВД на традиционные плунжерные насосы, где максимальное давление не превышает 400-1150 бар, без необходимости радикального изменения компонентов. Передаточное отношение между валом ТНВД и коленвалом равно 1:2. Еще одна особенность системы СР2 в применении охлаждения насоса маслом, а не дизельным топливом. Поскольку такие системы применяются только на габаритных двигателях крупных коммерческих автомобилей, диаметр отверстий распылителя форсунок достаточно большой, чтобы форсунки не закоксовывались фракциями масла, которое попадает в топливо. Оно подаётся непосредственно через присоединительный фланец или через впускной канал, который находится сбоку в зависимости от конструкции насоса.

Передающий насос интегрирован в ТНВД и находится на конце кулачкового вала. Он имеет стандартную для системы Bosch шестеренчатый принцип и высокое передаточное отношение. Насос выкачивает топливо из бака под отрицательным давлением и передает его к интегрированному фильтру тонкой очистки. После фильтра топливо проходит в клапан дозирования, который находится в верхней части головки ТНВД. Клапан контролирует объём подаваемого в плунжеры топлива в зависимости от сигнала частоты с ЭБУ. В верхней части плунжерной пары расположен комбинированный клапан для впуска и выпуска топлива. Под давлением топлива открывается впускной клапан в плунжере в момент, когда плунжер перемещается вниз, и топливо попадает в камеру для сжатия. Движением вниз плунжер как бы всасывает топливо внутрь. Под действием пружины выпускной клапан перекрывается, когда плунжер находится в мертвой нижней точке. Двигаясь вверх поршень сжимает топливо и как только давление в камере станет равным давлению в рампе, выпускной клапан открывается, а впускной перекрывается. Топливо выходит из насоса в сторону топливной рампы. Пружина плунжера обеспечивает постоянный контакт между плунжером и роликовым толкателем. Посредством кулачков вращательное движение кулачкового вала преобразуется в возвратно-поступательное движение плунжеров. Пружина плунжера обеспечивает его возврат в исходное положение.

Сравнительная Таблица Насосов Высокого давления Bosch
Тип ТНВД Максимальное давление в рампе (Бар) Тип смазки
CP1 1350 Диз. Топливо
CP1+ 1350 Диз. Топливо
CP1H 1600 / 1800 Диз. Топливо
CP1H+OWH 1100 Диз. Топливо
CP3.2 1600 Диз. Топливо
CP3.2+ 1100 Диз. Топливо
CP3.3 1600 Диз. Топливо
CP3.4 1600 / 1800 Масло
CP3.4+ 1600 Диз.Топливо
CP2 1400 Масло
CP2.2 1600 Масло
CP2.2+ 1600 Масло
CP2.4 1600 Масло
CP4.1 1800 / 2000 Диз. Топливо
CP4.2 1100 / 2000 Диз. Топливо

Список автомобилей, на которых используется система COMMON RAIL типа BOSCH:

VW-BUS.RU

01269 клапан управления опережением впрыска-n108

01269 клапан управления опережением впрыска-n108

  • Цитата
  • Цитата

Братцы бусоводы,всем доброго здравия! Подскажите кто знает где эта хреновина (01269 клапан управления опережением впрыска-n108) находиться и как выглядит. перерыл весь интернет кто что пишет. И желательно на движке ACV. Ехал сегодня из Орла зацокотели клапана и перестал тянуть двигло(такое ощущение что двигло клина поймало)заводиться хоть на холодную хоть на горячую с пол пинка , кое как допёр кинул комп и выдало вот это:

01269 клапан управления опережением впрыска-N108
31-10-обрыв или короткое замыкание на массу — не постоянно.

понимаю что это где-то на ТНВД но как это выглядит, Может кто-то сталкивался. На ночь уже не полез завтра буду коврять.

Обучение

Замена салонного фильтра Mercedes ML W164 Главная причина, почему следует сменить фильтрующий элемент салона на Мерседес МЛ W164 на свежий, — это не очень-то приятный… Подробнее » Фильтр салона мл 164 где стоит

Узел впрыска 130060 что это значит

  • автор: admin
  • 12.11.2022

Подшипник роликовый радиальный-упорный 130060/130120C Импортный роликовый радиальный-упорный подшипник с маркировкой 130060/130120C. Однорядный, 130060/130120 — Основное конструктивное исполнение.Размер подшипника: 60*120*32 мм. Стандарт: ISO Бренд: Gamet Внутренний… Подробнее » Узел впрыска 130060 что это значит

Транспондер спутниковый что это

  • автор: admin
  • 12.11.2022

Транспондер – что это? Транспондер – это устройство беспроводной связи, которое автоматически принимает, модулирует, усиливает и отвечает на входящие сигналы в режиме реального времени. Термин… Подробнее » Транспондер спутниковый что это

Удалитель ржавчины кппс как пользоваться

  • автор: admin
  • 12.11.2022

Автохимия АО КППС Паста антикоррозионная "Удалитель ржавчины КППС" — отзыв КППС Паста антикоррозионная — средство, которое поможет с легкостью избавиться от ржавчины на машине, на… Подробнее » Удалитель ржавчины кппс как пользоваться

Тосол какого цвета бывает для авто

  • автор: admin
  • 12.11.2022

Как отличить тосол от антифриза Автовладельцы в качестве хладагента используют тосол или антифриз. Вот только недавно купившему машину водителю не понять, какая жидкость залита в… Подробнее » Тосол какого цвета бывает для авто

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *