Устройство и принцип работы турбины на дизельном двигателе
Турбокомпрессор — устройство, которое позволяет примерно на 30% увеличить мощность мотора, при этом отсутствует необходимость физически увеличивать объём цилиндров. Такие агрегаты установлены практически на всех современных автомобилях, вне зависимости от типа используемого топлива. Ниже подробнее расскажем об устройстве и работе турбины дизельного двигателя, а также обрисуем минусы этого устройства и самые распространённые поломки.
Устройство и особенности турбины
Агрегат состоит из двух устройств — турбины и компрессора. Задача первой преобразовывать энергию выхлопных газов, а второго — подавать сжатый воздух в цилиндры. «Крыльчатки» — главные составляющие части этой системы, представляют собой два лопастных колеса (компрессорное и турбинное).
По своей сути компрессор — это насос, его единственная задача заключается в подаче сжатых атмосферных воздушных масс в цилиндры. Кислород необходим для сжигания топлива, чем больше его поступит, тем больше силовой агрегат сможет сжечь. В результате это приводит к значительному увеличению мощности движка без физического увеличения объёма или количества цилиндров. Система турбонаддува состоит из следующих компонентов:
- корпус компрессора;
- корпус турбины;
- корпус подшипников;
- компрессорное колесо;
- турбинное колесо;
- ось или вал ротора.
В турбонаддуве основным элементом выступает ротор, который защищается корпусом и крепится к специальной оси. И сам ротор, и корпус турбины изготавливаются из термостойких сплавов — это необходимо из-за того, что они находятся в постоянном контакте с газами высокой температуры.
Ротор и крыльчатка вращаются в разных направлениях с большой скоростью — такое решение обеспечивает их плотный прижим друг к другу. Принцип работы в следующем:
- Отработанные газы поступают в выпускной коллектор.
- Затем — в специальный канал, расположенный в корпусе нагнетателя, который выполнен в форме улитки.
- В «улитке» газы разгоняются до большой скорости и подаются на ротор.
Благодаря такому принципу и обеспечиваются вращение турбины. Что касается оси турбонагнетателя, то она крепится на специальных подшипниках скольжения и смазывается за счёт поступления жидкости из моторного отсека. Утечка смазочной жидкости предотвращается благодаря наличию прокладки и уплотнительным кольцам. Кроме того, дополнительную герметизацию обеспечивают смешанные и отдельные потоки отработанных газов и воздуха. Такое технологическое решение не обеспечивает гарантии в 100%, что выхлоп не попадёт в сжатый воздух, однако система этого и не требует.
Что ещё входит в систему турбонаддува
Турбина — сложный агрегат, инженерам потребовалось несколько десятилетий, чтобы довести систему до ума. Только на первый взгляд решение компенсировать потери КПД за счёт выхлопных газов кажется простой. Даже после создания устройства у него долгое время наблюдались определённые проблемы.
Например, не удавалось решить проблему турбоямы — задержки после нажатия на педаль газа и запуском ротора. Решение нашлось в виде использования двух клапанов. Один из них использовался для вывода излишек воздуха, а второй предназначался для выхлопных газов. Кроме того, современные турбины имеют изменённую геометрию лопаток, что серьёзно их отличает от подобных устройств второй воловины XX столетия.
Можно выделить ещё одну проблему, которая заключалась в излишней детонации — с ней тоже успешно справились современные инженеры. Проблема заключалась в том, что температура в рабочих секторах цилиндров резко увеличивалась во время нагнетания воздуха, особенно в последней стадии такта. Решение нашлось в установке интеркулера (промежуточного охладителя воздуха).
Интеркулер — устройство для охлаждения наддувочного воздуха. Он выполняет сразу две функции — препятствует детонации и не даёт уменьшиться плотности воздуха. В результате удалось сохранить работоспособность всей системы.
Также стоит отметить и другие важные составляющие турбины.
Регулировочный клапан. Отвечает за поддержание заданного уровня давления, излишки давления поступают в приёмную трубу.
Перепускной клапан. Используется для вывода излишних воздушных масс обратно во впускные патрубки — это нужно для снижения мощности при её избытке.
Стравливающий клапан. Если дроссель закрывается и нет датчика массового расхода воздуха, клапан будет возвращать излишки воздуха обратно в атмосферу.
Патрубки. Герметичные отрезки трубы. Одни используются для подачи воздуха, вторые для подачи смазочного масла.
Выпускные коллекторы. Должны быть совместимы с турбокомпрессором.
Принцип работы
Для начала нужно разобраться с двумя терминами.
Турбоподхват — состояние, при котором быстро вращающийся ротор увеличивает подачу воздуха в цилиндры, благодаря чему повышается мощность силового агрегата.
Турбояма — короткая задержка, которая возникает в работе турбины при повышении количества поступившего топлива во время нажатия педали газа. Задержка появляется из-за того, что ротору необходимо некоторое время, пока газы его не разгонят.
Турбонаддув повышает давление выхлопных газов за счёт более интенсивной работы мотора, но в то же время увеличивается и давление наддува. При достижении критических величин может произойти поломка, а потому этот процесс необходимо контролировать. За регулировку давления отвечают клапана, а мембрана и пружина следят за предельно допустимыми значениями. При достижении определённой величины мембрана открывает клапан для стравливания давления.
Работа турбины на дизельном двигателе нуждается в контроле давления, который осуществляется следующими процессами:
- если поступило слишком много воздуха, компрессор (используя клапан) освобождается от излишков;
- клапан стравливает давление в случаях, когда воздуха поступило слишком много — при этом агрегат работает стабильно и забирает ровно столько воздуха, сколько требуется.
Работа турбокомпрессора на дизельном двигателе
Работа осуществляется по следующие схеме:
- Компрессор нагнетает сжатый атмосферный воздух.
- Воздушная масса смешивается с топливом и поступает в цилиндры.
- Полученная топливно-воздушная смесь воспламеняется, что приводит поршни в движение.
- Параллельно с этим процессом появляются отработанные газы, которые направляются в выпускной коллектор.
- Скопившиеся в корпусе газы значительно увеличивают скорость.
- Вращение переходит (по валу) на компрессорный ротор, он втягивает новую порцию воздуха.
Получается интересное взаимодействие. Ротор вращается быстрее — больше поступает воздуха. Чем больше воздуха поступает — тем быстрее вращается ротор.
Минусы турбины на дизельном двигателе
Как и любое устройство, у турбины есть свои положительные характеристики (которые были описаны выше), так и недостатки. К минусам можно отнести в первую очередь увеличенный расход топлива, особенно это касается неправильно отрегулированных агрегатов. Второй минус — чувствительность к качеству топлива, что особенно актуально в российских условиях. Дело в том, что некачественный дизель может привести к детонации. Отметим и другие недостатки:
- общее удорожание двигателя;
- повышенная требовательность к моторному маслу;
- масло и фильтры приходится менять чаще (примерно каждые 5-6 тыс. км);
- нужно часто менять воздушный фильтр;
- ресурс турбины на дизельном двигателе значительно ниже, чем на бензиновом (из-за более высокой температуры выхлопа);
- средний ресурс агрегата составляет 200-250 тыс. км, после чего потребуется замена или, как минимум, капитальный ремонт;
- достаточно сложный ремонт, провести его среднестатистическому автовладельцу самому не получится.
Однако стоит отметить, что плюсы всё-таки перевешивают минусы. В противном случае турбины не пользовались бы такой большой популярностью.
Основные неисправности — признаки и причины
Сразу стоит оговориться, что основная причина поломок — это несвоевременное техническое обслуживание агрегата, его рекомендуется проводить минимум один раз в год. Следующая причина — низкое качество масла, либо его несвоевременная замена. Третья — попадание в устройство посторонних предметов (например, мелких камушков). Наконец, четвёртая — банальный износ отдельных компонентов турбины, ведь у каждого оборудования есть свой срок эксплуатации. Теперь опишем признаки, которые могут говорить о неисправности.
Чёрный дым из выхлопной трубы. Топливо сгорает в интеркулере или нагнетающей магистрали. Скорее всего — неисправность системы управления.
Сизый дым. Возможно, из-за нарушения герметизации турбины масло просачивается в камеру сгорания.
Белый дым. Сливной маслопровод загрязнился, потребуется его чистка.
Повышенный расход топлива. Воздух не доходит до компрессора.
Увеличен расход масла. Нужно проверить стыки патрубков — возможно, нарушена герметичность.
Уменьшение динамики разгона. Скорее всего вышла из строя система управления, из-за чего возник недостаток кислорода.
Посторонний свист, скрежет или шумы. Это может быть изменение зазора ротора, дефект в корпусе, утечка воздуха между двигателем и турбиной, либо загрязнение маслопровода.
Всегда нужно соблюдать правила эксплуатации агрегата — это снизит вероятность появления поломки и продлит срок службы устройства. Следует придерживаться нескольких простых правил:
- следите за качеством топлива и масла;
- не забывайте вовремя менять масло и фильтры;
- начинайте движение только после того, как движок прогреется;
- после прекращения движения нужно дать мотору поработать на холостых, а не сразу его выключать.
И, конечно же, следует регулярно проходить ТО.
Что делать, если турбина сломалась
Если обнаружилась неисправность первое, что нужно сделать — провести диагностику. Причём чем раньше, тем лучше. Если вовремя заменить неисправную деталь, удастся избежать более серьёзных проблем. Например — зачастую автовладелец не обращает внимание на лёгкое постукивание думая, что это не имеет значения, в результате через какое-то время приходится покупать новую турбину, хотя изначально можно было обойтись небольшим ремонтом.
Следует отметить, что недостаточно знать, как работает турбина на дизеле — нужно идеально разбираться во всех её компонентах. Только обладая соответствующими навыками, опытом и оборудованием получится провести качественный ремонт. Именно поэтому рекомендуем не пытаться самостоятельно отремонтировать агрегат (можно сделать только хуже), а обратиться в компанию «Дизель-Мастер». Специализируемся на ремонте турбин с 1998 года, а потому знаем о них всё.
5 причин обратиться именно к нам:
- В наличие высокоточное диагностическое оборудование (стенды Bosch и Delphi);
- В штате — специалисты с большим практическим опытом подобных работ.
- Быстрый ремонт в течение дня без потери в качестве.
- Используем только оригинальные комплектующие и ремкомплекты.
- Предоставляем официальную гарантию на комплектующие и выполненный ремонт.
При первых признаках дефекта — обратитесь к нам. Установим причину неисправности и предложим эффективный, экономичный способ её решения.
Срок службы турбины на дизеле
Турбокомпрессор бензинового или дизельного двигателя изначально имеет достаточно большой ресурс, который планово может даже превышать моторесурс силового агрегата до первого капитального ремонта. На практике турбина может выходить из строя гораздо быстрее, требуя регулярной проверки работоспособности.
Рекомендуем также прочитать статью об устройстве турбокомпрессора. Из этой статьи вы узнаете о том, как работает система турбонаддува двигателя внутреннего сгорания.
Средний срок службы турбины дизельного двигателя находится на отметке около 150-250 тыс. пройденных километров. Что качается бензиновых двигателей, турбина на таких моторах может прослужить немного дольше, однако на срок службы сильно влияют конструктивные особенности турбонагнетателя и индивидуальные условия эксплуатации.
Особенности турбин для бензиновых и дизельных ДВС
Современные турбодизели зачастую получают нагнетатели, которые конструктивно предусматривают возможность гибкого управления потоком отработавших газов. Решение называется турбиной с изменяемой геометрией. Такое устройство отличается довольно высокой начальной стоимостью на фоне аналогов. Также стоит добавить, что ремонтопригодность данных турбин достаточно низкая.
На бензиновые турбомоторы повсеместно ставятся турбины, геометрия которых фиксирована. Ремонту нагнетатели данного типа поддаются намного легче и способны прослужить достаточно долго после профессионального восстановления и последующего прохождения процесса балансировки.
Что касается восстановления турбин с изменяемой геометрией, которые повсеместно ставят на дизеля, то ситуация другая. Далеко не каждый сервис принимает турбины с такой конструкцией в работу. Также после ремонта нет никаких гарантий, что турбокомпрессор данного типа будет способен нагнетать должное количество воздуха в строгом соответствии с оборотами мотора.
Поломка турбины и последствия
Неисправности турбокомпрессора независимо от типа его конструкции требуют незамедлительного ремонта. Также необходимо устранить причины, которые могут приводить к поломке турбины. Это необходимо для того, чтобы после ремонта или установки нового нагнетателя устройство не вышло из строя повторно.
Рекомендуем также прочитать статью о ресурсе дизельного двигателя. Из этой статьи вы узнаете о том, какой плановый ресурс имеет мотор данного типа, а также о факторах, влияющих на моторесурс силового агрегата.
Чаще всего турбонагнетатели страдают по причине того, что сильно снижается эффективность смазки ротора турбокомпрессора. Дело в том, что к маслу для турбированных дизельных или бензиновых ДВС выдвигаются особые требования. Смазка турбомоторов работает в условиях повышенных нагрузок и высоких температур, а также выступает в качестве рабочей жидкости для охлаждения.
В процессе эксплуатации двигателя наблюдается снижение производительности маслонасоса по причине его износа, пропускная способность подводящих масляных магистралей для подачи смазки в турбину постепенно забивается отложениями. Также продукты износа деталей двигателя в виде механических частиц попадают в моторное масло и могут привести к повреждению ротора турбины.
Советы и рекомендации
Нарушения в работе компрессора приводят к нестабильной работе двигателя, потере мощности, увеличению расхода топлива, изменению состава отработавших газов и повышенному содержанию токсичных веществ в выхлопе. В дизельном двигателе с некорректно работающей турбиной может быстро выходить из строя сажевый фильтр.
- Основной рекомендацией во время эксплуатации турбомотора является регулярная замена моторного масла и масляного фильтра строго по регламенту. Также необходимо поддерживать постоянную чистоту системы смазки. После ремонта турбины обязательно требуется тщательная промывка системы смазки двигателя. Дополнительно может потребоваться снятие картера для лучшей очистки. Не редки случаи, когда замене подлежит и маслоподводящая магистраль, по которой смазка подается к турбокомпрессору.
- Не меньшего внимания требует и система подачи воздуха, так как от максимальной чистоты также зависит ресурс турбины дизельного или бензинового двигателя. Может потребоваться промывка или даже замена интеркулера, продувка всех магистралей. Поток воздуха обязательно должен проходить свободно, так как любое увеличение давления в выходной части турбокомпрессора приведет к утечкам моторного масла через уплотнения в области турбинного колеса. Высокое разрежение во впуске дополнительно приводит к тому, что выбросы масла увеличиваются. Также обязательной и регулярной замене подлежит воздушный фильтр.
После ремонта особое внимание уделяется настройке турбокомпрессора. Слишком малое или слишком большое количество подаваемого в двигатель воздуха негативно сказывается на ресурсе силового агрегата. На разных режимах работы мотору необходим оптимальный состав топливно-воздушной смеси для своевременного воспламенения и полноценного сгорания.
Самостоятельная проверка турбокомпрессора дизельного двигателя. Проверка нагнетателя без снятия. Наличие масла в корпусе турбины, люфт вала, крыльчатка.
Для чего охлаждать турбину перед остановкой двигателя. Особенности работы турбокомпрессора, температура выхлопных газов, охлаждение моторным маслом.
Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.
Назначение и конструкция турбокомпрессора дизельного мотора. Принцип работы турбонагнетателя, особенности использования турбины на дизельном ДВС.
Что представляет собой двигатель с наддувом и чем отличается от атмосферного. Основные преимущества и недостатки турбированных ДВС. Какой мотор выбрать.
Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.
Какой ресурс у турбины дизельного двигателя?
В среднем на бензиновых двигателях ресурс турбины составляет 150 тысяч километров. На дизельных двигателях — 250 тысяч километров. Однако если ездить быстро, перекручивая двигатель и турбину, то ресурс может сократиться и до 100, и до 60 тысяч.10 сент. 2014 г.
Понятие моторесурса дизельного двигателя означает определенное количество моточасов, которые новый силовой агрегат данного типа должен гарантированно отработать. Под окончанием ресурса дизеля следует понимать, что дальнейшая эксплуатация ДВС становится невозможной без проведения первого капитального ремонта силовой установки.
Блок цилиндров дизельного ДВС выполнен из чугуна, тогда как для бензиновых моторов повсеместно применяются сплавы из алюминия. Детали цилиндропоршневой группы и КШМ дизелей изготавливают в соответствии с более высокими стандартами и допусками для повышения их прочности.
Но когда речь идет о ресурсе двигателя, здесь дело будет обстоять несколько сложнее, поскольку для определения потребуется воспользоваться специальной таблицей, в которой представлены показатели для различных марок транспортных средств. Говоря о ресурсе мотора автомобиля, необходимо понимать возможность ее эксплуатации до капитального ремонта.
Дизельные авто с объемом от 1.9 до 2.2 литра имеют средний заявленный ресурс около 300-350 тыс. километров, который находится на практически одинаковой отметке с бензиновыми моделями. Малолитражки на солярке закономерно имеют еще меньший ресурс.
Сколько в среднем ходят турбированные двигатели?
Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть.
Какой пробег для дизельного двигателя считается большим?
В среднем, дизельные агрегаты могут прослужить 300 000 км, после чего понадобится полное восстановление. При этом у бензиновых срок службы чаще всего доходит до 200 000 км.
Как определить что турбина вышла из строя?
Выделяют такие распространенные признаки умирающей турбины:Присутствие лишних шумов из турбины в процессе работы двигателя (гул или свист)Дым сизого цвета из выхлопной трубы;Увеличение расхода масла;Снижение уровня давления наддува.Nov 21, 2016
Что будет если ездить с неисправной турбиной?
Если сломанная турбина не извлечена, продолжится износ вала и втулки. Значительно увеличится расход масла. Если не следить за его расходом, это негативно отразится на двигателе. Есть риск возникновения нагара на поршнях или кольцах мотора, негативного воздействия на форсунки.
Какой двигатель лучше с турбиной или без?
турбина быстрее изнашивается, если сразу после остановки автомобиля отключать мотор. Чтобы продлить срок службы турбомотора, ему нужно дать немного поработать на холостых оборотах для охлаждения турбины. Атмосферные двигатели, в отличие от турбированных, менее требовательны к специфическим характеристикам масла.
Где больше расход топлива с турбиной или без?
Турбина снижает количество потребляемого бензина или ДТ за счет высокого КПД турбомотора. При сравнении одинаковых по мощности двигателей, к примеру 150 л. с., будет видна внушительная разница в расходе топлива: без турбины на 100 км потребуется 9-10 литров горючего, с турбиной – около 6-7 литров.
Какой самый надежный дизельный двигатель?
Сейчас сложно выбрать действительно достойный дизельный автомобиль, тому эксперты решили выделить топ-5 самых надежных автомобилей с дизельными двигателями.Toyota 2.0 D-4D и 2.2 D-4D. . Hyundai-Kia 1.5 и 1.6 CRDi. . Nissan 2.2 DTi и 2.5 DTi. . Renault 2.0 dCi. . Fiat 1.9 JTD.Mar 28, 2021
Сколько живет дизельный двигатель?
Принято считать, что надежность и срок службы дизельных двигателей во много раз лучше, чем у бензиновых. Это неправда, ведь дизели тоже не застрахованы от повреждений. Средний ресурс такого двигателя около 300 000 км, бензинового — около 200 000 км.
Как понять что турбина умирает на дизеле?
К числу наиболее характерных признаков изношенного турбокомпрессора можно отнести:из выхлопной трубы идет густой дым темного оттенка;при работе двигателя возникает сильный шум;наличие громких хлопков в области размещения турбины;резкое снижение динамических показателей с падением тяги. . появление «масложора»;
Как понять что турбина на дизеле не работает?
Как понять, что турбина не работает:На приборной панели высвечиваются определенные сигналы.Из выхлопной трубы идет дым синего оттенка, когда машина сильно разгоняется.Выходят черные выхлопные газы из трубы. . Белый дым из трубы. . Масло начало быстро расходоваться и остаются подтеки на турбине.
Какой ресурс у турбины дизельного двигателя? Ответы пользователей
Средний срок службы турбины дизельного двигателя находится на отметке около 150-250 тыс. пройденных километров. Что качается бензиновых двигателей, турбина .
В среднем турбина дизеля стабильно выдерживает пробег в 150 – 250 000 км. Бензиновые турбомоторы могут работать дольше дизельных при условии соблюдения правил .
Зачастую когда разговор идет про турбированный мотор, многие вспоминают что на бензине ресурс турбины не такой высокий, примерно 100 – 150 000 км.
Тогда почему же ломаются турбокомпрессора на двигатель? Так, например, средний срок работы турбины в дизельных двигателях составляет до 200 тыс. км.
Турбированный двигатель — какой у него ресурс? Его плюсы и минусы
Какой ресурс турбины дизельного двигателя. На чтение 15 мин Обновлено 13 ноября, 2020. Содержание. Турбированный двигатель — какой у него ресурс?
Срок службы турбированных дизельных и бензиновых моторов достаточно велик, но меньше чем у атмосферного. Да и турбина, как показывает практика, выходит из строя .
В среднем на бензиновых двигателях ресурс турбины составляет 150 тысяч километров. На дизельных двигателях — 250 тысяч километров. Однако если ездить быстро, перекручивая двигатель и турбину, то ресурс может сократиться и до 100, и до 60 тысяч.Sep 10, 2014
Но при правильной эксплуатации ресурс любой турбины на самом деле не меньше ресурса двигателя. А при выполнении совсем несложных правил .
Турбина дизельного двигателя живет в среднем от 150 до 250 тыс. километров. При этом на срок службы оказывают значительное влияние особенности конструкции .
Renault Scenic какой ресурс у турбины дизельного двигателя 2.0 л.? · Алина Шмелева. Профи. 04.02.2015 15:23. Доброго дня, ресурс турбины в .
Срок службы турбированных дизельных и бензиновых моторов достаточно велик, но меньше чем у атмосферного. Да и турбина, как показывает практика, .
Ресурс работы турбины дизельного двигателя . Так, например, средний срок работы турбины в дизельных двигателях составляет до 200 тыс. км.
Какой ресурс у турбины дизельного двигателя? Видео-ответы
Cрок службы турбины дизельного двигателя. Ресурс турбины автомобиля.
Какой срок службы турбины для дизельного двигателя, отчего зависит ресурс турбины автомобиля? Как продлить .
Ресурс турбины. Сколько служит турбина, как её обслуживать
Хотите знать, какой ресурс турбины вашего автомобиля? Специалист по ремонту турбин компании «Мастер Сервис» .
КАК НЕ УБИТЬ ТУРБИНУ ДВИГАТЕЛЯ??
Турбина гонит масло? А может турбина дымит? Как не убить турбину двигателя?Качественная турбина двс стоит .
ПОЧЕМУ ТУРБИНА НА ДИЗЕЛЕ — ПОЧТИ ВЕЧНАЯ?
Давайте подумаем почему на дизельных моторах, турбина может ходить намного дольше чем скажем на бензиновых!
Первые признаки, что турбокомпрессор выходит из строя | Как правильно ехать на таком автомобиле
турбокомпрессор #неисправныйтурбокомпрессор #признакинеисправноститурбокомпрессора Первые признаки того, что .
Как проверить СОСТОЯНИЕ ТУРБИНЫ? ПРЯМЫЕ ПРИЗНАКИ износа.
ДАННОЕ ВИДЕО НЕ ЯВЛЯЕТСЯ ТЕХНИЧЕСКИМ ПОСОБИЕМ! ВСЕ МАНИПУЛЯЦИИ ВЫ ПРОВОДИТЕ НА СВОЙ СТРАХ И .
Об авторе
Иван Быстров
Здравствуйте! Меня зовут Иван Быстров, и я главный редактор этого сайта. Мне 32 года, я живу в Ярославской области России. Я всегда увлекался автомобилями, всегда хотел узнать больше, но зачастую не мог найти ответы на свои вопросы. Это сподвигло меня на создание проекта, где будет собрано воедино максимальное количество вопросов про автомобили, и на каждый из них будет предложен грамотный ответ! Очень надеюсь, что мой труд поможет всем получить новые знания быстро и без лишних затрат энергии!
СРОК СЛУЖБЫ ТУРБИНЫ
СРОК СЛУЖБЫ ТУРБИНЫ
(источник www.turbobalans.ru/srok-sluzhby-resurs-turbiny)
Производители турбокомпрессоров клятвенно заявляют, что ресурс их изделий сравним с ресурсом двигателя, а вероятность отгрузки с их предприятий продукции, имеющей скрытые дефекты, равна нулю со многими нулями после запятой. Им трудно не поверить: современные оригинальные турбины изготавливаются на высокотехнологичных автоматизированных линиях и проходят строжайший многоступенчатый контроль качества. Возникает вопрос: почему за время эксплуатации автомобиля турбокомпрессор приходится менять, и иногда не один раз? Почему после установки турбины, приобретенной на вторичном рынке, значительная часть покупателей возвращается к продавцам с претензиями: «турбина течет…, не дует…, развалилась…»?
Производители кривят душой, поставщики шельмуют или за время пути от завода до прилавка у «железа» истекает срок годности?
Технологии турбонаддува эволюционируют стремительными темпами. Конструкция турбокомпрессоров усложняется, на смену относительно простым, нерегулируемым турбинам повсеместно приходят регулируемые, работающие во взаимосвязи с системой управления двигателем (СУД). Становятся нормой еще недавно диковинные турбокомпрессоры с регулируемым сопловым аппаратом (РСА), в которых применяются патентованные зарубежные технологии VNT, VTG, VGT. Совершенствуются исполнительные механизмы и алгоритмы управления турбиной. Процесс идет настолько быстро, что не только рядовые пользователи автомобилей, но и те, кто профессионально занимаются их ремонтом и послепродажным обслуживанием, оказываются неподготовленными к «общению» с принципиально новой техникой. К сожалению, специалистов, глубоко разбирающихся в технологиях турбонаддува, у нас «не сыскать днем с огнем».
Конечно, на то есть и объективные причины. Российские производители турбокомпрессоров не пережили перестройку и ускорение, отраслевые институты давно «дышат на ладан», вузовская наука и в прежние времена была далека от реальной жизни, а уж теперь и подавно – отстала безнадежно. Эта ситуация особенно очевидна с позиции эксперта, который ежемесячно исследует 40-50 самых разных турбин (оригинальных, неоригинальных и контрафактных, для легковой, грузовой и специальной автотехники, отечественной и зарубежной), вызвавших претензии по качеству. Имеющий дело не только с железом, но и с клиентом (автовладельцем, представителем продавца или автосервиса) эксперт как никто другой может составить объективное мнение о производителях, их продукции, и ее потребителях.
Ответ на первый из поставленных вопросов (почему реальный срок службы турбины оказывается меньше, чем рассчитывает ее производитель) можно сформулировать в краткой и развернутой формах. Кратко можно сказать так: ресурс турбины сравним с ресурсом двигателя … при условии полной исправности всех систем двигателя, его безупречной эксплуатации и обслуживания. Развернутый ответ может стать темой не только журнальной публикации, но научного труда. Постараемся «развернуть в меру».
Турбокомпрессор – единственный навесной агрегат двигателя, который работает в тесной взаимосвязи практически со всеми системами двигателя: впуска и выпуска отработавших газов, смазки и охлаждения, топливоподачи и вентиляции картера, а в последнее время – и с системой управления двигателем. Турбина – это еще и наиболее высоконагруженный агрегат, действующий в условиях колоссального перепада температур и огромных динамических нагрузок. Они определяются фантастической частотой вращения ротора, которая может достигать величины 5 000 с-1. Вследствие этого номинальный режим работы турбокомпрессора зачастую оказывается близким к предельному. Поэтому даже незначительные отклонения в работе смежных систем двигателя, не говоря уже об их неисправности, губительно влияют на работоспособность турбокомпрессора, сокращают его ресурс и могут привести к отказу. С этой точки зрения турбину можно рассматривать как своего рода индикатор состояния двигателя: если с мотором не порядок, турбина отреагирует первой. Если двигатель не прошел и сотни тысяч километров, а турбину пора менять — делайте выводы.
Возможных причин отказа турбокомпрессора великое множество. Производители турбин объединяют наиболее распространенные из них в несколько групп: попадание в турбокомпрессор посторонних предметов, дефицит смазки, загрязнение масла и превышение допустимой частоты вращения ротора. Они неплохо описаны в общедоступных источниках, поэтому ограничимся краткими комментариями с учетом наших российских реалий.
Из-за невероятно большой скорости вращения ротора турбокомпрессора попадание любого инородного предмета в корпус компрессора или турбины приводит к повреждению крыльчаток. Даже если повреждение незначительное, гибель турбины – всего лишь дело времени. Любое искажение формы лопаток – это дисбаланс ротора, он, в конце концов, и добивает агрегат.
В корпус компрессора часто попадает мусор через поврежденный воздушный фильтр, оставленные в воздуховоде нерадивыми автослесарями (или автовладельцами) куски бумаги, тряпки, мелкий крепеж. В корпус турбины всякая всячина залетает из мотора, что подтверждается повреждением входной кромки турбинного колеса. Это могут быть части свечей накаливания, клапанные седла, тарелки, направляющие втулки, куски прокладки коллектора или поршней. На шероховатостях коллектора накапливаются окалина и нагар, которые время от времени отрываются. У некоторых бензиновых моторов стенки выпускного коллектора делают двухслойными. В то время как внешняя выглядит вполне прилично, внутренняя может разваливаться от перегрева и бомбардировать крыльчатку турбины обломками. Как это ни странно на первый взгляд, но турбинное колесо «обстреливается» и со стороны приемной трубы выпускной системы. Обратными волнами давления в турбину «засасываются» частицы окалины и разрушившегося катализатора.
Продолжительно вращаться с огромной частотой ротор может только при отсутствии прямого контакта вала и подшипников скольжения, радиальных и упорного. Их обязательно должна разделять прочная масляная пленка (масляный клин). Это условие выполняется, когда давление и расход масла через турбину соответствуют норме, установленной заводом. В турбокомпрессорах с неохлаждаемым корпусом подшипников смазка выполняет еще одну важную функцию – отводит тепло от вала, подшипников и центрального корпуса (прежде всего, со стороны турбины). Понятно, что дефицит смазки приводит к ослаблению масляного клина и нарушению теплового режима турбины. Высокие динамические нагрузки разрушают масляную пленку, и наступает губительное «сухое» трение с последующим сильным износом трущихся поверхностей со следами перегрева в виде интенсивных цветов побежалости.
Причиной дефицита масла может быть любая неисправность системы смазки двигателя, например, износ масляного насоса, отказ редукционного клапана или засорение масляного фильтра. Нередко турбина испытывает масляное голодание из-за снижения пропускной способности маслоподающей трубки — она может быть повреждена механически или засорена коксовыми отложениями. Особо следует упомянуть о качестве моторного масла, от которого во многом зависит его склонность к коксованию. Не секрет, что в двигателях с турбонаддувом применяются специальные сорта масел. Их рецептура и характеристики отличаются от обычных с учетом более напряженных условий работы по температуре и нагрузкам. Использование качественного, но не предназначенного для таких целей масла сокращает срок службы турбины.
К примеру, в турбосервис часто попадают машины VW/Audi 1,8T, только что сошедшие с гарантии и проходившие регулярное обслуживание на дилерских станциях. При обследовании их моторов приходится наблюдать такую картину: закоксовано все, что только можно: маслоподающая трубка, картер, система вентиляции и, конечно, турбина. Причиной может быть или качество смазки, или необоснованно большой интервал сервисного обслуживания. Каким бы качественным ни было масло, при длительной эксплуатации в городе присадки срабатываются, масло утрачивает свои свойства и начинается его интенсивный угар. То есть происходит образование отложений и коксование в деталях двигателя. Как это ни странно, в регламентных работах по этим моторам такие операции как проверка давления картерных газов или очистка системы вентиляции картера вообще не предусмотрены.
Бывает, что в масляном голоде турбины оказываются виноватыми неграмотность или небрежность сервисных работников. Установленная со смещением или густо смазанная герметиком прокладка в месте крепления маслоподающей трубки частично или полностью перекрывает отверстие для прохода смазки. Еще раз стоит напомнить, что при подсоединении к турбине внешних магистралей использовать герметики строжайше запрещено.
Распространенная причина выхода из строя турбокомпрессора – присутствие в масле частиц грязи. Это могут быть продукты естественного износа деталей двигателя, коксования масла и деятельности небрежных мотористов. Попадая в зазоры между трущимися деталями турбины, они вызывают их механический износ. Мелкие частицы аккуратно полируют и поверхности трения и зализывают острые кромки, крупные оставляют на них глубокие риски и задиры. В любом случае действие абразивных частиц приводит к увеличению зазоров, резкому снижению прочности масляной пленки и ее разрушению. Иногда частицы грязи, поступающие в турбину со смазкой, действуют еще коварнее: перекрывают сечение маленьких каналов для подачи масла к узлам трения.
Распространено заблуждение, что масляный фильтр системы смазки двигателя является панацеей от такого рода неприятностей. Напомним: когда в результате засорения фильтра его сопротивление возрастает до критического значения, приоткрывается предохранительный клапан и часть масла начинает поступать в систему нефильтрованным. Примерно то же самое происходит в момент холодного пуска двигателя с вполне рабочим фильтром. Пока масло не прогреется и его прокачиваемость не придет в норму, предохранительный клапан может оставаться открытым. Одним словом, все, что взвешено в масле наверняка рано или поздно окажется в турбине.
Список классических причин отказа турбокомпрессоров завершается неисправностями, приводящими к превышению предельной частоты вращения ротора, иными словами, к «перекручиванию» турбины. Перекручивание сопровождается неконтролируемым ростом давления и «перенаддувом» двигателя. Оно особенно опасно, если турбина нерегулируемая или недостаточно активно контролируется системой управления двигателем. В этом случае мотор может просто разрушиться.
При перекручивании турбины, как правило, появляется дисбаланс ротора. Вначале повреждаются его самые слабые места, например, периферийные части лопаток турбины или компрессора. Их выкрашивание под действием запредельных центробежных сил и высокой температуры усиливает дисбаланс.
Как упоминалось ранее, ротор смазывается гидродинамическим способом – «плавает» на масляном клине. Дисбаланс сопровождается резким увеличением радиальных нагрузок между валом и подшипниками. Под их действием масляный клин, разделяющий поверхности скольжения, разрушается и начинается сухое трение. А дальше – как повезет. Если везения нет, вал «прихватывает» и он, как правило, ломается по опасному сечению. Не удивительно, что в «перекрученной» турбине можно обнаружить признаки, указывающие на масляное голодание – это результат нарушения несущей способности масляного клина. Самая распространенная причина перекручивания – резкое повышение температуры отработавших газов вследствие неисправности системы топливоподачи. Перенаддув также может быть следствием неисправности системы регулирования турбокомпрессора или некомпетентного вмешательства в ее работу.
Перефразируя небезызвестного классика, допустимо сказать, что причины отказа турбокомпрессоров – не догма, а творческое, развивающееся учение. С распространением турбин с внешним регулированием к простейшим, классическим причинам их преждевременной кончины добавились сложные неисправности элементов их регулирования, компонентов СУД и сбои программного обеспечения. Они достойны того, чтобы выделить их в отдельную группу.
Вот распространенный случай. Машина вдруг перестает ехать. Владелец и механики обычно сразу грешат на турбину: «не дует». Кстати, чтобы проверить, развивает ли турбокомпрессор давление или нет, необязательно выполнять точные измерения. Достаточно просто как следует «газануть» и пощупать напорный патрубок на выходе из компрессора.
Если действительно, турбина «не дует», причин может быть много, но все они, как правило, кроются вне турбины. У турбокомпрессоров с байпасным регулированием встроенные клапаны бывают двух видов – нормально закрытые и нормально открытые. К примеру, у турбины, что стоит на моторах VW/Audi 1,8T, клапан нормально закрытый, а у турбины двигателя Mercedes-Benz Vito 2,2 Cdi – нормально открытый. Клапана приводятся в действие пневматической камерой управления. Обычно в камеру нормально закрытых клапанов поступает давление, а нормально открытые управляются разрежением. Двигатель запустился – в камере создалось разрежение – клапан закрылся. Если по какой-то причине разрежение не поступило в камеру управления, клапан остается полностью открытым и все газы «улетают в трубу», минуя колесо турбины. Турбина «не дует». К счастью, такие случаи не очень часты.
Гораздо чаще они происходят с турбокомпрессорами с РСА. Этот механизм оказывает очень глубокое воздействие на турбину – меняет ее проходное сечение в широком диапазоне. Поэтому любая неисправность в его управлении (трехходовой электромагнитный клапан, вакуумный насос, электрические контакты и т.п.) оборачивается серьезным повреждением турбокомпрессора.
Взять, к примеру, относительно новые корейские турбодизели Hyundai/KIA (Starex, Sorento и т.п.), которые оснащаются турбинами с РСА и пневматической камерой управления. Такие агрегаты регулярно приносят в ремонт со сломанным пополам валом. Дело в том, что на этих моторах часто выходит из строя электромагнитный клапан, регулирующий разрежение в камере управления РСА. Сопловой аппарат не регулируется и все время остается в исходном состоянии: лопатки занимают положение, соответствующее минимальному проходному сечению проточного канала турбины. Делается это для того чтобы максимально повысить кинетику слабенького потока отработавших газов, характерного для малых частот вращения и нагрузок двигателя. С ростом оборотов двигателя лопатки РСА должны поворачиваться так, чтобы проходное сечение канала турбины увеличивалось вслед за увеличением расхода отработавших газов. Если система регулирования бездействует, «газование» приводит к тому, что турбокомпрессор «перекручивается» и происходит перенаддув двигателя. Лучший вариант развязки – срыв впускных патрубков высокого давления, которые могут сработать как предохранительный клапан
Понятно, что установив вместо разбитой турбины новую и не проверив исправность системы управления, владелец вскоре возвращается к продавцу с еще одной кучей железа и претензией: плохая турбина! Похожая проблема сплошь и рядом встречается и на других моторах с аналогичными системами наддува. Она особенно коварна тем, что отказ регулирующего клапана, как правило, напрямую не фиксируется системой самодиагностики СУД. Если ошибка и сохраняется в памяти блока управления, ее расшифровка человеку несведущему ничем не поможет. Получается, надо «ведать». Часто жизнь турбокомпрессора укорачивают причины, которые можно объединить в категорию под названием «городская эксплуатация автомобиля».
Уже упоминалось о том, что длительная эксплуатация машины в мегаполисе приводит к деградации свойств моторного масла. Она также вызывает повышенное нагарообразование в двигателе и турбине, что особенно опасно для современных агрегатов с РСА. «Пробочный» режим движения, усугубленный плохим топливом, изношенной поршневой, нерегулярной профилактикой систем впуска, выпуска, вентиляции картера и т.д. делают свое черное дело и в механизме РСА накапливаются отложения. Это «дело» длится, как правило, всю рабочую неделю. При этом направляющие лопатки РСА работают в узком диапазоне углов регулирования, понемногу расчищая здесь нагар своими кромками. Но вот наступает уик-енд, автовладелец выбирается из забитого машинами города на свободу и от души нажимает на газ. По идее, при этом лопатки должны так же от души открыться, но не тут-то было! Они упираются в накопившийся за неделю, нетронутый слой нагара и клинят.
Нагарообразование опасно не только для турбин с РСА. Известны случаи, когда обычные турбины с байпасным регулированием зарастали нагаром так, что ротор переставал вращаться – вставал намертво! При городской езде это может оставаться незамеченным, но когда приходит время нажать на газ, машина не едет! На городской машине турбина с подклинивающим ротором – частое явление. Нагар также опасен тем, что блокирует систему вентиляции картера. Засоренная система вентиляции если и пропускает картерные газы, то с частицами нагара и отложений. Вся эта грязь летит в компрессор и компрессорное колесо покрывается черным налетом. Это верный признак того, что надо принимать срочные меры по профилактике системы.