Как получить электричество из картошки
Перейти к содержимому

Как получить электричество из картошки

  • автор:

Электричество из картошки, как добыть?

Сейчас пошла волна массового желания зарядить смартфон, благодаря овощам или фруктам.

Так недавно известный блоггер Мамикс попробовал зарядить телефон с помощью 20 килограмм лимонов. Ничего у него не получилось.

Тем не менее, если вы решили провести подобный эксперимент, то вам понадобится картошка, вернее очень много картошки, два вида проводника (медная проволока и оцинкованные гвозди).Проводники необходимо соединить между собой, к примеру, изолентой. И, конечно, главное соединить всю конструкцию в правильном порядке.

На самом деле, электричество можно добыть из многих источников — из фруктов, воздуха, соленой воды, дерева и т.д.

Что касается картошки, то она действительно является прекрасным электролитом, напряжение вырабатываемого электричества может достигать двух вольт.

Что делаем с картофелем? Разрезаем его на две части, через одну половинку проводим провода. В другой половинке делаем небольшое углубление и заполняем его зубной пастой, смешанной с небольшим количеством соли.

Затем соединяем нашу картошку воедино, можно сцепить их зубочистками. При этом важно, чтобы провода имели контакт с зубной пастой. Кстати, провода рекомендуется зачистить для надежности.

Как сделать батарейку из картошки — 2 способа. Рабочий и не очень.

электричество из фруктов и овощей

Наверняка многие из курса физики помнят или слышали, что из обыкновенного картофеля, и не только из него, можно добыть немного электричества.

Что для этого необходимо, и возможно ли таким способом зажечь маломощный фонарик, светодиодные часы питающиеся от круглых батареек 1-2Вольт или заставить работать радиоприемник? И да и нет, давайте разбираться подробнее.

откуда в картошке электричествоЧтобы понять, что напряжение из картошки это не выдумка, а вполне реальная вещь, достаточно воткнуть в одну единственную картофелину острые щупы от мультиметра и вы тут же увидите на экране несколько милливольт.напряжение милливольты в картошке

уровень напряжения в картошке

Если немного усложнить конструкцию, например с одной стороны в клубень вставить медный электрод или бронзовую монетку, а с другой стороны что-нибудь алюминиевое или оцинкованное, то уровень напряжения существенным образом вырастет.

напряжение в лимоне как извлечь

Кстати, с одинаковым успехом можно использовать для этого лимоны, апельсины, яблоки. Таким образом, все эти продукты могут питать не только людей, но и электроприборы.

Внутри таких фруктов и овощей, из-за окисления, с погруженного анода (оцинкованный контакт) будут утекать электроны. А притягиваться они будут к другому контакту — медному.

При этом не путайте, электричество здесь образуется не прямо из картошки. Оно хорошо вырабатывается именно благодаря химическим процессам между тремя элементами:

  • цинк
  • медь
  • кислота

напряжение из земли разность потенциалов

И именно цинковый контакт здесь служит как расходка. Все электроны утекают с него. При определенных условиях даже земляная почва может дать электричество. Главное условие — ее кислотность.

земляная батарея

Втыкаете в землю условно два палки (естественно из цинка и меди) и замеряете напряжение. Иногда разность потенциалов доходит до 0,2В. При влажной почве результат улучшается.

Это так называемая земляная батарея.

Итак, вот что необходимо для сборки более или менее емкостной батарейки:

картофель

  • картошка

Несколько штук, так как от одной толку будет мало.

провода с крокодилами

  • медные, желательно одножильные провода

Чем больше сечением, тем лучше.

медные гвозди для контакта в картошке батарее

  • оцинкованные и медные гвозди или шурупы (можно использовать просто проволоку)

Гвозди как раз таки и будут играть основную роль в выработке электричества для фонарика.

  • оцинкованные — это минусовой контакт (анод)
  • обмедненные — это плюс (катод)

схема подключения картошки для выработки напряжения и питания электронных часов

Если применить вместо оцинкованных простые гвозди, то вы потеряете в напряжении до 40-50%. Но как вариант, работать все равно будет.

То же самое относится и к применению алюминиевой проволоки вместо гвоздей. При этом, увеличение расстояния между электродами в одной картофелине особой роли не играет.

присоединение медного провода к медному гвоздю

Берете медные провода (моно жилу) сечением 1,5-2,5мм2, длиной 10-15см. Зачищаете их от изоляции и приматываете к гвоздику.

пайка провода к цинковому гвоздю для подключения к картошке

Лучше всего конечно припаять, тогда и потери напряжения будут гораздо меньше.

подключение гвоздей контактов к картошке

Один медный гвоздь с одной стороны провода, а оцинкованный с другой.

Далее раскладываете картофелины и последовательно втыкаете в них гвозди.

подключение картошек между собой для выработки электричества

При этом в каждый клубень втыкаются разные гвозди, от разных пар проводов. То есть в каждую картошку у вас должен быть воткнут одни цинковый контакт и один медный.

Соединяются разные клубни между собой, только через гвозди из различных материалов — медь+цинк — медь+цинк и т.д.

замер уровня напряжения от картошек 3шт

Допустим у вас три картохи, и вы соединили их между собой вышеописанным образом. Чтобы узнать какое же напряжение получилось, воспользуйтесь мультиметром.

Переключаете его в режим измерения ПОСТОЯННОГО напряжения и подключаете измерительные щупы к проводникам крайних картофелин, т.е. к начальному плюсовому контакту (медь) и конечному минусовому (цинк).

правильный провод для подключения к картошке

  • в качестве медного электрода использовать не гвоздь, а саму же проволоку, которой собирается схема
  • в контактах применить пайку

напряжение 12 вольт от 4-х картошек

то всего 4 картошки способны выдать до 12 вольт!

Если ваш дешевый фонарик запитывается от трех пальчиковых батареек, то для успешного его свечения вам понадобится порядка 5 вольт. То есть, картошек при использовании обычных проводов нужно минимум в три раза больше.

подключение большого количества картошек и замер напряжения от них

Для этого кстати, не обязательно искать дополнительные клубни, достаточно ножом разрезать существующие на несколько частей. После чего проделать с проводками и гвоздиками всю ту же самую процедуру.

В каждый разрезанный клубень последовательно вставить один оцинкованный и один медный гвоздик. В итоге вполне реально получить постоянное напряжение более чем 5,5В.

А можно ли теоретически из одной единственной картошки, получить 5 вольт и при этом добиться того, чтобы вся сборка по размеру была не больше пальчиковой батарейки? Можно и очень легко.

самая маленькая картофельная батарейка

Отрезаете маленькие кусочки сердцевины с картошки, и прокладываете их между плоскими электродами, например монетками из разного металла (бронза, цинк, алюминий).

напряжение от самой маленькой картофельной батарейки

как получить 5 вольт от одной картошки

А если собрать их несколько штук вместе, то требуемое значение до 5В легко получится на выходе.

подключение фонарика от картошки

Казалось бы все, цель достигнута, и осталось только найти способ подключить проводки к контактам питания фонарика или светодиодов.

свечение фонарика при подключении от картошек

Однако проделав такую процедуру и собрав не слабую конструкцию из нескольких картох, вы будете очень сильно разочарованы итоговым результатом.

Маломощные светодиоды конечно будут светиться, как-никак напряжение вы все-таки получили. Однако уровень яркости их свечения будет катастрофически тусклым. Почему так происходит?

Потому что, к сожалению, такой гальванический элемент дает ничтожно низкий ток. Он будет настольно малым, что даже не все мультиметры способны его замерить.

Кто-то подумает, раз не хватает тока, нужно добавить еще побольше картошки и все получится. Вот видео эксперимент с использованием 400-х! картофелин и подключением от них светодиодной лампочки аж на 110Вольт.

Безусловно, существенное увеличение клубней позволит поднять рабочее напряжение.

Да и конструкция вся эта не будет рационально пригодной.

схема подключения светодиода от вареной картошки

Но все-таки, есть ли простой способ, как повысить мощность такой батарейки и уменьшить габариты? Да, есть.

Например, если для этой цели использовать не сырую, а варенную картошку, то мощность такого источника электричества увеличивается в несколько раз!

форматы батареек

Чтобы собрать удобную компактную конструкцию, воспользуйтесь корпусом от старой батарейки формата С (R14) или D(R20).

переделка простой батарейки под картофельную

Удаляете все содержимое внутри (естественно, кроме графитового стержня).

как сделать практичную батарейку из варенной картошки

Вместо начинки все пространство заполняете варенной картошкой.

переделанная батарейка под картошку

После чего собираете конструкцию батарейки в обратном порядке.

Цинковая часть корпуса старой батарейки, здесь играет существенную роль.

Отсюда и большая мощность и КПД.

напряжение от одной картофельной батарейки

Один такой источник питания будет легко выдавать почти 1,5 вольта, также как и маленькая пальчиковая батарейка.

ток 80мА батарейка из вареной картошки

Но самое главное для нас это не вольты, а миллиамперы. Так вот, такая «вареная» модернизация, способна обеспечить ток до 80мА.

подключение радиоприемника от картофельных батареек

Такими батарейками можно запитать приемник или электронные светодиодные часы.

Причем вся сборка проработает уже не секунды, а несколько минут (до десяти). Больше батареек и картохи, больше автономного времени работы.

Электричество из картошки: как получить в домашних условиях

Получение электричества с помощью овощей — задача не такая сложная, как кажется. Узнать практически, как получить электричество из картошки можно у себя на кухне. Понадобится всего несколько картофелин, кусочек провода, несколько гвоздей, шайб, монет, чтобы с их помощью собрать действующий гальванический элемент или даже батарею. С помощью такой батареи можно не только запитать маломощную нагрузку вроде часов, радиоприёмника, но даже зарядить телефон или зажечь бытовую лампу освещения.

Использование сырого картофеля

Получить электричество из картошки возможно даже в домашних условиях. Чтобы убедиться в этом, достаточно воткнуть в картофелину два металлических щупа вольтметра. Прибор покажет наличие напряжения на уровне нескольких милливольт.

Электричество из картофеля

Конечно же, от такого источника вряд ли удастся запитать какой-либо электроприбор, слишком мала мощность. Если вместо щупов из одинакового металла применить цинковый катод и медный анод, его напряжение существенно возрастёт.

Чем больше площадь электродов, тем эффективнее работает ячейка. Цинк можно добыть из отработанной батарейки, разрезав металлический цинковый стакан гальванического элемента. Вариант попроще: воспользоваться обычным оцинкованным гвоздём, винтом или шурупом из строительного магазина. Анод изготавливается из отрезка медного провода, жилы кабеля или медного крепежа из того же строительного магазина. Медно-цинковая овощная ячейка даст уже около 0,5-0,7В. По сути, в результате получается настоящий гальванический элемент.

Не имеет значения, целая будет картофелина или нет. Крупный корнеплод, разрезанный на части будет работать так же, как и целый.

Пластинчатый элемент

Ещё один эффективный способ получения картофельного электричества состоит в помещении плоского кусочка сырого корнеплода между пластинками меди, цинка, а также их сплавов. В качестве пластин можно использовать различные медные монеты, а отрицательный электрод сделать из плоской оцинкованной шайбы подходящего диаметра. Такой элемент получается компактным, из него проще составить батарею.

Соединение картофелин для получения электричества

Картофельная батарея

Одна медно-цинковая картофельная ячейка позволит получить максимум около 0,9 В и очень малый ток. Для того, чтобы повысить максимальную мощность, нужно соединить несколько элементов последовательно, параллельно или применить комбинированную схему.

Последовательное соединение

Этим способом пользуются для увеличения напряжения батареи. При такой схеме полюса соединяются таким образом, что положительный полюс одной ячейки соединяется с отрицательным полюсом следующего. Крайние отводы станут плюсом и минусом батареи. ЭДС всех элементов складывается, при этом ток, протекающий в цепи будет равен току одного элемента. Общее суммарное напряжение равно сумме ЭДС всех соединённых элементов.

Способ соединения картофелин для получения электричества

Две последовательно соединённых картофелины или пластинчатых элемента дадут уже 1,5 В, сравнимые с привычной пальчиковой батарейкой.

С последними дело обстоит очень просто, поскольку такая батарейка получается путём укладки слоями по схеме: плюс-медь-картофель-цинк-медь-картофель-цинк-минус.

Параллельное соединение

При такой схеме соединения токи всех элементов складываются. Все положительные полюса объединяются и образуют «плюс», все отрицательные полюса образуют «минус». Суммарный ток будет равен сумме токов всех объединённых в параллельную схему ячеек, а напряжение равно среднему напряжению отдельных частей.

Способ соединения картофелин для получения электричества

Комбинированная схема

Заключается в комбинировании последовательной и параллельной схемы соединения для увеличения максимального тока и напряжения батареи.

Таким образом, применяя схему последовательно-параллельного соединения, можно получить вполне работоспособную батарею, например, способную электричеством из картошки зарядить аккумулятор телефона в экстренной ситуации.

При большом количестве задействованных овощей можно даже зажечь бытовую лампу освещения.

Интересное видео о получении электричества из картофеля:

Вареный картофель

Обеспечивает ещё более высокие энергетические показатели. При варке клубней органические вещества в них разрушаются, что способствует снижению электрического сопротивления «электролита». Батарея, собранная из пластинчатых элементов на основе вареного овоща отличается большей мощностью, чем аналогичная из сырого.

Физико-химическое обоснование

Сам по себе картофель, или другой овощ, не содержит каких-либо запасов электричества. И это не та энергия, которую наш организм извлекает при употреблении овощей в пищу. Возникновение электричества происходит вследствие химической реакции окисления-восстановления на электродах гальванической ячейки. В ходе реакции происходит обмен электронами между анодом и катодом с протеканием электрического тока в среде электролита. Электролитом в данном случае является слабый раствор кислот и солей, содержащийся в соке клубня. Цинк или другой металл, окисляясь в среде электролита, освобождает электроны, которые восстанавливаясь на втором, медном электроде образуют электрический ток. При такой реакции цинковый электрод постепенно расходуется. А сам картофель является всего лишь контейнером, способный длительное время сохранять сочность (электролит).

Безусловно, опыты по получению электричества из картошки интересны прежде всего с познавательной точки зрения и для практического применения мало пригодны.

Проект "Картофель как источник электрической энергии"

Руководитель: Масличенко Елена Владимировна, учитель физики и математики.

Глава I. История создания батареек

I.1. Что такое батарейка

I.3. Успехи ученых в создании овощных и фруктовых батареек

Выводы по главе I

II.2 Выводы по главе II

Работа посвящена необычным источникам энергии. Однажды я узнала, что из фруктов и овощей можно сделать батарейку, которая будет давать электрический ток. Нас очень заинтересовал этот факт, и мы захотели узнать об этом больше.

Впервые о нетрадиционном использовании фруктов я прочитала в книге Николая Носова. По замыслу писателя, Коротышки Винтик и Шпунтик, жившие в Цветочном городе, создали автомобиль, работающий на газировке с сиропом. Мы подумали, а сможет ли батарейка из картофеля подзарядить мобильный телефон.

Цель проекта: получение электрического тока при помощи картофеля.

  1. Проанализировать литературу, Интернет-ресурсы по теме исследования.
  1. Ознакомиться с принципом работы батарейки.
  1. Провести исследование напряжения в гальванических элементах из картофеля.
  1. Провести эксперимент по созданию батарейки из картофеля.

Объект исследования – электрические батарейки.

Предмет исследования – картофель как источник тока.

Гипотеза: предположим, что из картофеля можно сделать источник тока – батарейку.

Теоретическая значимость заключается в анализе специальной литературы.

Практическая значимость заключается в выводах по результатам эксперимента и создании батарейки из картофеля.

На I этапе проводили теоретическое исследование, анализ литературы.

На II этапе – исследование и эксперимент, делали выводы.

Глава I. История создания батареек

I.1. Что такое батарейка

Батарейка – это удобное хранилище электричества, которое может быть использовано для обеспечения энергией переносных устройств. Некоторые батарейки предназначены для одноразового использования, другие можно перезаряжать. Батарейки бывают разнообразной формы и размеров (Приложение 1). Некоторые – маленькие, как таблетка. Некоторые – величиной

  • холодильник. Для начала мы решили разобраться, как устроена обычная батарейка и как в ней создаётся электрический ток. Посмотрев в энциклопедии

«Всё обо всём» и по рисункам разобрались, что это две металлические пластины, помещенные в специальное химическое вещество – электролит. Одна пластина подключена к выводу «+», другая – к выводу «-».Электрод с более отрицательным потенциалом, на котором при разряде протекает процесс окисления, называется отрицательным электродом , или анодом , и обозначается знаком (−). Электрод с более положительным потенциалом, на котором происходят реакции восстановления, принимается за положительный электрод , называется катодом и обозначается знаком (+). Стоит подключить к батарейке нагрузку, например, лампочку, как от пластины «+» к пластине «-» потечёт ток. Начнется химическая реакция в электролите, которая начнет перекидывать электроны с «-» (отрицательной) пластины на «+» (положительную).

  • начале своих исследований мы решили узнать, откуда появилась батарейка. Еще в 1791 году Итальянский врач Луиджи Гальвани сделал важное наблюдение, только не сумел его правильно истолковать.

Гальвани заметил, что тело мертвой лягушки вздрагивает под действием электричества — если положить его возле электрической машины, когда оттуда вылетают искры.Итальянский ученый граф Алессандро Вольта в 1800 году повторил опыты Гальвани, но с большей точностью. Он заметил, что, если мертвая лягушка касается предметов из одного металла — например, железа — никакого эффекта не наблюдается. Чтобы эксперимент прошел успешно, всегда требовались два разных металла. И Вольта сделал вывод — появление электричества объясняется взаимодействием двух различных металлов, между которыми образуется химическая реакция. Он поочередно уложил встолбик серебряные и цинковые кружки, изолированные фетровыми прокладками, элемент так и называется: вольтов столб. Гальвани открывает биологические эффекты электричества. Вольта изобретает источник постоянного тока — гальванический элемент (1800). (Приложение2).

Батарейки, которые можно заряжать многократно, изобрел в 1859г.

французский физик Гастон Планше.

I.3. Успехи ученых в создании овощных и фруктовых батареек

Ученые утверждают, что, если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи лимонов.

Индийские ученые работают над созданием необычных батареек для несложной бытовой техники с низким потреблением энергии. Внутри этих батареек должна быть паста из переработанных бананов и апельсиновых корок. Одновременное действие четырех таких батареек позволяет запустить настенные часы, а для ручных часов хватит одной такой батарейки.

Компания Sоnу на научном конгрессе в США представила батарейку, работающую на фруктовом соке. Если «заправить» такую батарейку 8 мл сока, то она сможет проработать в течение одного часа. Применяться новинка может в плеерах, мобильных телефонах.

  • группа ученых из Великобритании создала компьютер, источником питания для которого является картошка. За основу был взят старый компьютер
  • маломощным процессором Iпtе1 386. В него вместо жесткого диска поставили карту памяти на 2 мегабайта. Питается это устройство 12 картофелинами,

которые меняются каждые 12 дней (Приложение 3).

Выводы по главе I

На первом этапе работы мы изучали теоретическую сторону вопроса. Проанализировав литературу по теме исследования, мы пришли к следующим выводам:

  • батарейка – это удобное хранилище электричества, которое может быть использовано для обеспечения энергией переносных устройств;подключив к батарейке нагрузку, например, лампочку, от пластины «+» к пластине «-» потечёт ток;
  • появление электричества объясняется взаимодействием двух различных металлов, между которыми образуется химическая реакция;
  • батарейки, которые можно заряжать многократно, изобрел в 1859г. французский физик Гастон Планше;
  • ученые утверждают, что, если у вас дома отключат электричество, вы сможете некоторое время освещать свой дом при помощи овощей или фруктов; они достигли некоторых успехов в своих исследованиях.

Глава II. Картофель как источник тока

На просторах всемирной сети интернет появлялись различные видео. Подзарядки телефонов картофелем, лимоном. Подключение ламп дневного света к картофелю как источнику тока и.т.д Все выше перечисленные эксперименты удивительным образом были удачными. Нас это очень заинтересовало, мы решили проверить действительно ли это работает, провести исследование на картофеле.

Оборудование: картофель, проволока медная, алюминиевые шурупы, телефон, батарейка, мультиметр, соединительные провода, светодиод

Цель работы: Определить наличие электрического тока в картофеле.

Эксперимент 1: Зарядка телефона очищенной картошкой. Телефон не заряжается, причем мы пробовали разные модели телефон (Приложение1)

Эксперимент 2: Зарядка телефона картошкой разрезанной на пополам. Телефон не заряжается(Приложение2)

Возникает вопрос, существует ли вообще электрический ток в картофеле.

Эксперимент 3: Соберем электрическую цепь из картофеля и мультиметра, при помощи алюминиевых шурупов и медной проволоки. Проверим наличие напряжение при помощи мультиметра. (Приложение3)

Прибор показал напряжение :

  1. U= 0, 2 (В)
  2. U = 0,3(В)

Мы видим , что действительно напряжение в цепи существует, но очень маленькое.

Эксперимент 4: Подключим к нашей цепи светодиод. Светодиод не горит.

Проверим, является ли картофель проводником. Подключи цепь к кроне, (источнику питания), светодиод горит.

Как же изготовить батарейку?

С одной стороны, воткнуть в картофель алюминиевый шуруп, с другой, кусочек медной проволоки.

Картофель работает как батарейка: медный – положительный (+) полюс, а алюминиевый шуруп. К сожалению, это очень слабый источник энергии. Его можно усилить, соединив последовательно несколько картофелин, вставить алюминиевые шурупы и медные проволоки в другие картофелины. Соединить картофелины таким образом, чтобы алюминиевый шуруп первого картофеля подключался к медной проволоке второго и т.д.

Как же теперь убедиться в том, что батарея работает?

Один из способов – подключить к ней устройство мультиметр, которое позволит измерить напряжение и силу тока батарейки.

Другой способ – приложить два свободных конца проволок к контактам светодиода (лампочки), он не загорится так как картошка сама по себе плохой проводник и проводит очень мало электричества.

Вывод. Батарейка дала ток, но этого тока не достаточно, чтобы даже зажечь маленький светодиод!

Выводы по главе II

Подводя итог опытно-экспериментальной части исследования можно утверждать:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *