Как кулоны перевести в амперы
Электрический заряд — это физическая величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии между телами.
1 Ач = 3600 Кл
1 Ампер-час = 3600 Кулонов
Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
Для сложных расчетов по переводу нескольких единиц измерения в требуемую (например для математического, физического или сметного анализа группы позиций) вы можете воспользоваться универсальными конвертерами единиц измерения.
На этой странице представлен самый простой онлайн переводчик единиц измерения ампер-часы в кулоны (Ач в Кл). С помощью этого калькулятора вы в один клик сможете перевести кулоны в ампер-часы (Кл в Ач) и обратно.
Преобразовать кулон в ампер-час (Кл в Ач):
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘427 кулон’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘кулон’ или ‘Кл’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрический заряд’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’43 Кл в Ач‘ или ’71 Кл сколько Ач‘ или ’29 кулон -> ампер-час‘ или ’29 Кл = Ач‘ или ’36 кулон в Ач‘ или ’58 Кл в ампер-час‘ или ’77 кулон сколько ампер-час‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(26 * 67) Кл’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. Например, такое сочетание может выглядеть следующим образом: ‘427 кулон + 1281 ампер-час’ или ’23mm x 77cm x 39dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 5,062 499 953 931 2 × 10 26 . В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 5,062 499 953 931 2. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 5,062 499 953 931 2E+26. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 506 249 995 393 120 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Как измерить емкость аккумулятора и перевести фарады в ампер-часы
Заряд Q, как количество электричества, измеряется к кулонах (Кл), электроемкость конденсаторов C — в фарадах, микрофарадах (мкф), а вот емкость аккумуляторов измеряется почему-то не в фарадах, а в ампер-часах (миллиампер-часах).
Что бы это значило? Один ампер — это кулон за одну секунду, мы знаем из курса физики, что если через проводник за 1 секунду проходит электрический заряд равный 1 кулону, то по проводнику течет ток в 1 ампер.
И что тогда такое ампер-час? Ампер-часом (Ач) считается емкость аккумулятора, при которой по приведенному току в 1 ампер, аккумулятор разрядится за 1 час до минимально допустимого напряжения.
Например для литий-ионного аккумулятора типоразмера 18650, емкостью 3400 мАч, это означает, что аккумулятор при токе в 340мА сможет отдать свой заряд за 10 часов, а автомобильный аккумулятор емкостью 55 Ач разрядится от примерно от 12,8 до 10,8 вольт за 2 часа при разрядном токе в 27,5 А.
Как вы наверняка знаете, аккумуляторы нельзя разряжать до нуля, и в реальности каждому типу аккумуляторов свойственно минимально разрешенное напряжение, до которого допускается разряжать аккумулятор без вреда.
Например, автомобильный свинцовый аккумулятор нельзя разряжать ниже чем до 10,5 вольт, а литиевый аккумулятор можно разряжать не ниже чем 2,75 вольта. Если эти допуски нарушать, то ресурс аккумулятора будет истощен значительно быстрее, чем могло бы быть с соблюдением рекомендаций относительно минимального напряжения.
Таким образом, емкость аккумулятора оценивают исходя из регламентированных норм для различных типов аккумуляторов: автомобильные аккумуляторы тестируют на 20 часовом цикле разряда, а литиевые — на 5 часовом. Полностью заряженный аккумулятор разряжают заранее выбранным током I до минимально допустимого напряжения разряда, измеряя при этом время разряда Т. В конце эксперимента, перемножив ток и измеренное время, — получают значение реальной емкости аккумулятора в ампер-часах. Q = IT.
Простейший способ экспериментальной оценки емкости аккумулятора известного типа
Итак, для измерения емкости аккумулятора простейшим но кропотливым способом, не прибегая к применению специальных приборов, его полностью заряженный можно разрядить через резистор известного приемлемого номинала.
Например, допустимое безвредное напряжение полного разряда литиевого элемента типоразмера 18650 равно 2,75 вольт, а напряжение полного его заряда принимается равным 3,75 вольт. Помните, что такие аккумуляторы заряжают напряжением не более 4,35 вольт в специальных зарядных устройствах!
Допустим, полностью заряженный аккумулятор имеется. Выберем средний ток разряда в 325 мА, возьмем резистор номиналом 10 Ом, мощностью 2 Вт — с запасом. Измерим стартовое напряжение на клеммах аккумулятора, допустим оно получилось ровно 3,75 вольт, и присоединим к клеммам резистор, одновременно засекая время на часах. Далее будем следить за вольтметром — через сколько часов напряжение снизится до уровня 2,75 вольт.
К примеру, через 10 часов 27 минут напряжение на аккумуляторе стало 2,75 вольт, причем на старте он было 3,75 вольт, и это при разряде через резистор в 10 Ом. Итак, емкость уже можно с хорошей точностью оценить: стартовый ток 3,75/10 = 375 мА, финишный ток 2,75/10 = 275 мА, средний ток (375+275)/2 = 325 мА. Значит, в течение 10,45 часов аккумулятор отдавал средний ток в 0,325 А, следовательно емкость равна Q = 10,45*0,325 = 3400 мА-ч. Это хотя и грубый, но надежный способ оценки емкости аккумулятора.
Автомобильный аккумулятор
Для измерения емкости автомобильного аккумулятора удобно применить обычную лампу накаливания от фары на 60 ватт. Средний ток в 5 ампер она обеспечит. К полностью заряженному аккумулятору (до примерно 12,5-12,8 вольт) подключают лампу и вольтметр, одновременно засекая время. Когда напряжение снизится до 10,8 вольт — отключите лампу и зафиксируйте прошедшее время. Например, если прошло 9 часов, то реальная емкость данного автомобильного аккумулятора Q = 9*5 = 45 Ач.
Перевести фарады в ампер-часы
Аккумулятор, в отличие от конденсатора, имеет очень большой участок нелинейности на разрядной кривой. Но все же некоторые любители экспериментов пробуют, и у них это успешно получается, в некоторых применениях заменять аккумулятор суперконденсаторами.
1 ампер-час — это 3600 кулон. Пусть, мы хотим получить батарею конденсаторов, эквивалентную по разрядной характеристике, хотя и на коротком участке, аккумуляторной батарее номиналом 12 вольт, емкостью 55 ампер-часов. 55 ампер в течение часа — это 55*3600 кулон.
Примем изменение напряжения от 13 до 11 вольт, тогда поскольку Q = С(U1-U2), то С = 55*3600/2 = 99000 Ф. Почти 100 килофарад эквивалентная электроемкость автомобильного аккумулятора, если бы его разрядная характеристика была такой же, как у конденсатора.
В интернете есть видео, где шестью суперконеднсаторами по 3000 Ф, на 2,7 В каждый, соединенными последовательно заменяют стартерную батарею автомобиля. Получается 500 Ф примерно на 16 В.
Давайте прикинем, какой ток и в течение какого времени сможет дать такая сборка. Пусть рабочий диапазон принят снова от 13 до 11 вольт. В течение какого времени можно рассчитывать на ток в 200 А (с запасом)? I = С(U1-U2)/t, тогда t = C(U1-U2)/I = 500*2/200 = 5 секунд. Достаточно чтобы завести двигатель.
Подробнее об электрическом заряде
Как ни удивительно, но мы сталкиваемся со статическим электричеством ежедневно — когда гладим любимую кошку, расчесываем волосы или натягиваем свитер из синтетики. Так мы сами поневоле становимся генераторами статического электричества. Мы буквально купаемся в нём, ведь мы живем в сильном электростатическом поле Земли. Это поле возникает из-за того, что её окружает ионосфера, верхний слой атмосферы — электропроводящий слой. Ионосфера образовалась под действием космического излучения и имеет свой заряд. Занимаясь обыденными делами вроде разогрева пищи, мы совершенно не задумываемся о том, что пользуемся статическим электричеством, повернув кран подачи газа на горелке с автоподжигом или поднеся к ней электрозажигалку.
Примеры статического электричества
Мы с детства инстинктивно боимся грома, хотя сам по себе он абсолютно безопасен — просто акустическое следствие грозного удара молнии, которая и вызвана атмосферным статическим электричеством. Моряки времён парусного флота впадали в священный трепет, наблюдая огоньки святого Эльма на своих мачтах, которые тоже являются проявлением атмосферного статического электричества. Люди наделяли верховных богов древних религий неотъемлемым атрибутом в виде молний, будь то греческий Зевс, римский Юпитер, скандинавский Тор или Перун русичей.
С тех пор, как люди впервые начали интересоваться электричеством, прошли века, и мы даже порой не подозреваем, что учёные, сделав из изучения статического электричества глубокомысленные выводы, спасают нас от ужасов пожаров и взрывов. Мы укротили электростатику, нацелив в небо пики громоотводов и снабдив бензовозы заземляющими устройствами, позволяющими электростатическим зарядам безопасно уходить в землю. И, тем не менее, статическое электричество продолжает хулиганить, создавая помехи приёму радиосигналов — ведь на Земле одновременно бушует до 2000 гроз, которые ежесекундно генерируют до 50 разрядов молний.
Исследованием статического электричества люди занимались с незапамятных времён; даже термину «электрон» мы обязаны древним грекам, хотя они подразумевали под этим несколько иное — так они называли янтарь, который прекрасно электризовался при трении (др. — греч. ἤλεκτρον — янтарь). К сожалению, наука о статическом электричестве не обошлась без жертв — российский учёный Георг Вильгельм Рихман во время проведения эксперимента был убит разрядом молнии, которая является наиболее грозным проявлением атмосферного статического электричества.
Статическое электричество и погода
В первом приближении, механизм образования зарядов грозового облака во многом сходен с механизмом электризации расчёски — в нём точно так же происходит электризация трением. Льдинки, образуясь из мелких капелек воды, охлаждённой из-за переноса восходящими потоками воздуха в верхнюю, более холодную, часть облака, сталкиваются между собой. Более крупные льдинки заряжаются при этом отрицательно, а меньшие — положительно. Из-за разницы в весе происходит перераспределение льдинок в облаке: крупные, более тяжёлые, опускаются в нижнюю часть облака, а более лёгкие льдинки меньшего размера собираются в верхней части грозового облака. Хотя всё облако в целом остаётся нейтральным, нижняя часть облака получает отрицательный заряд, а верхняя — положительный.
Подобно наэлектризованной расческе, притягивающей воздушный шарик из-за индуцирования на его ближней к расческе стороне противоположного заряда, грозовое облако индуцирует на поверхности Земли положительный заряд. По мере развития грозового облака, заряды увеличиваются, при этом растёт напряжённость поля между ними, и, когда напряжённость поля превысит критическое значение для данных погодных условий, происходит электрический пробой воздуха — разряд молнии.
Человечество обязано Бенджамину Франклину — впоследствии президенту Высшего исполнительного совета Пенсильвании и первому Генеральному почтмейстеру США — за изобретение громоотвода (точнее было бы назвать его молниеотводом), навсегда избавившего население Земли от пожаров, вызываемых попаданием молний в здания. Кстати, Франклин не стал патентовать своё изобретение, сделав его доступным для всего человечества.
Не всегда молнии несли только разрушения — уральские рудознатцы определяли расположение железных и медных руд именно по частоте ударов молний в определённые точки местности.
В числе учёных, посвятивших своё время исследованию явлений электростатики, необходимо упомянуть англичанина Майкла Фарадея, впоследствии одного из основателей электродинамики, и голландца Питера ван Мушенбрука, изобретателя прототипа электрического конденсатора — знаменитой лейденской банки.
Наблюдая за гонками DTM, IndyCar или Formula 1, мы даже не подозреваем, что механики зазывают пилотов для смены резины на дождевую, опираясь на данные метеорологических РЛС. А эти данные, в свою очередь, основаны именно на электрических характеристиках подступающих грозовых облаков.
Статическое электричество — наш друг и враг одновременно: его недолюбливают радиоинженеры, натягивая заземляющие браслеты при ремонте сгоревших плат в результате удара поблизости молнии — при этом, как правило, выходят из строя входные каскады оборудования. При неисправном заземляющем оборудовании оно может стать причиной тяжёлых техногенных катастроф с трагическими последствиями — пожаров и взрывов целых заводов.
Статическое электричество в медицине
Тем не менее, оно приходит на помощь людям при нарушениях сердечного ритма, вызванных хаотическими судорожными сокращениями сердца больного. Его нормальная работа восстанавливается пропусканием небольшого электростатического разряда при помощи прибора, называемого дефибриллятором. Сцена возвращения пациента с того света с помощью дефибриллятора является своего рода классикой для кино определённого жанра. При этом следует отметить, что в кино традиционно показывают монитор с отсутствующим сигналом сердцебиения и зловещей прямой линией, хотя на самом деле применение дефибриллятора не помогает, если сердце пациента остановилось.
Другие примеры
Нелишне будет вспомнить о необходимости металлизации самолетов для защиты от статического электричества, то есть, соединения всех металлических частей самолета, включая двигатель, в одну электрически целостную конструкцию. На законцовках всего оперения самолета устанавливают статические разрядники для стекания статического электричества, накапливающегося во время полета вследствие трения воздуха о корпус самолета. Эти меры необходимы для защиты от помех, возникающих при разряде статического электричества, и обеспечения надежной работы бортового электронного оборудования.
Электростатика играет определённую роль в знакомстве учеников с разделом «Электричество» — более эффектных опытов, пожалуй, не знает ни один из разделов физики — тут тебе и волосы, вставшие дыбом, и погоня воздушного шарика за расческой, и таинственное свечение люминесцентных ламп безо всякого подключения проводов! А ведь этот эффект свечения газонаполненных приборов спасает жизни электромонтёрам, имеющих дело с высоким напряжением в современных линиях электропередач и распределительных сетях.
И самое главное, учёные пришли к выводу, что статическому электричеству, точнее его разрядам в виде молний, мы, вероятно, обязаны появлению жизни на Земле. В ходе экспериментов в середине прошлого века, с пропусканием электрических разрядов через смесь газов, близкую по составу к первичному составу атмосферы Земли, была получена одна из аминокислот, которая является «кирпичиком» нашей жизни.
Для укрощения электростатики очень важно знать разность потенциалов или электрическое напряжение, для измерения которого придуманы приборы, называемые вольтметрами. Ввел понятие электрического напряжения итальянский учёный 19-го века Алессандро Вольта, по имени которого и названа эта единица. В своё время для измерения электростатического напряжения использовались гальванометры, названные по имени соотечественника Вольта Луиджи Гальвани. К сожалению, эти приборы электродинамического типа вносили искажения в измерения.
Изучение статического электричества
К систематическому изучению природы электростатики учёные приступили со времён работ французского учёного 18-го века Шарля Огюстена де Кулона. В частности, он ввёл понятие электрического заряда и открыл закон взаимодействия зарядов. По его имени названа единица измерения количества электричества — кулон (Кл). Правда, ради исторической справедливости, надо заметить, что годами ранее этим занимался английский учёный лорд Генри Кавендиш; к сожалению, он писал в стол и его работы были опубликованы наследниками лишь спустя 100 лет.
Работы предшественников, посвященные законам электрических взаимодействий, дали возможность физикам Джорджу Грину, Карлу Фридриху Гауссу и Симеону Дени Пуассону создать изящную в математическом отношении теорию, которой мы пользуемся до сих пор. Главным принципом в электростатике является постулат об электроне — элементарной частице, входящей в состав любого атома и легко отделяющейся от него под воздействием внешних сил. Помимо этого, действуют постулаты об отталкивании одноимённых зарядов и притягивании разноимённых.
Измерение электричества
Одним из первых измерительных приборов явился простейший электроскоп, изобретённый английским священником и физиком Абрахамом Беннетом — два листочка золотой электропроводной фольги, помещённые в стеклянную ёмкость. С тех пор измерительные приборы значительно эволюционировали — и теперь они могут измерять разницу в единицы нанокулон. С помощью особо точных физических инструментов, российский учёный Абрам Иоффе и американский физик Роберт Эндрюс Милликен сумели измерить электрический заряд электрона
Ныне, с развитием цифровых технологий, появились сверхчувствительные и высокоточные приборы с уникальными характеристиками, которые, благодаря высокому входному сопротивлению, почти не вносят искажений в измерения. Помимо измерения напряжения такие приборы позволяют измерять и другие важные характеристики электрический цепей, таких, как омическое сопротивление и протекающий ток в широком диапазоне измерений. Самые продвинутые приборы, называемые из-за их многофункциональности мультиметрами, или, на профессиональном жаргоне, тестерами, позволяют измерять также и частоту переменного тока, емкость конденсаторов и осуществлять проверку транзисторов и даже измерять температуру.
Как правило, современные приборы имеют встроенную защиту, не позволяющую вывести прибор из строя при неправильном применении. Они компактны, просты в обращении и абсолютно безопасны в работе — каждый из них проходит через ряд испытаний на точность, проверяется в тяжёлых режимах работы и заслужено получает сертификат безопасности.
1 кулон это 1 ампер если за сек?. Или это кол-во в штуках электронов как молекул при силе 1 ампера в сек тока ?
.translatorscafe.com/unit-converter/ru/charge/1-14/кулон-ампер-минута/
да. более идиотского определения трудно представить, особенно если учесть, что СИ допридумывали уже в 20-м веке, когда уже была теория относительности.
у нас есть естественная мера заряда — заряд электрона. ну вроде бери и радуйся! Не хочется — так давайте введем через закон Кулона, чтобы там не торчали никакие коэффициенты.
А вот хрен, давайте мы пойдем через зад, и введем заряд через единицу времени и магнитное поле! При том, что магнитного поля никакого не существует, это просто эффект, возникающий из-за конечности скорости света!
Так и этого мало, по определению ампер — сила между двумя бесконечными проводниками, расположенными параллельно в метре в вакууме. У вас есть под рукой бесконечные провода в вакууме, между которыми можно замерить силу? А питание надо подавать к концам? Ой, они же бес-конечные, как же подключать?
То есть изменение эталона метра и секунды — меняют единицу заряда.
Какой извращенец это придумал? Да еще при том, что нас тут природа наградила готовым эталоном — электроном!
Ах да, это же скучно, что в законе Кулона будет просто константа, как законе всемирного тяготения! Давайте еще введем константу через зад, чтобы она стояла в знаменателе, да еще и с добавком 4Пи!
Справочник физических величин : Электричество и магнетизм
1 А — сила тока, при которой происходит перенос заряда в 1 Кл за 1с времени.
Где: I — сила тока, А; dq — приращение заряда;
dt — промежуток времени.
1 См — проводимость проводника, сопротивление которого составляет 1 Ом.
1 См/м — удельная проводимость проводника который при длине в 1м и сечении в 1м 2 имеет сопротивление 1 Ом.
Ватт (Вт) = Воль-Ампер (В·А)
1 Вт — мощность тока в цепи с напряжением в 1 В и силой тока в 1 А
где: P — мощность тока, Вт; U — напряжение, В;
Работа, совершаемая силами поля над зарядом, равным заряду электрона, при прохождении им разности потенциалов в 1 В
1 Ф — емкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл.
1 Гн — индуктивность такого проводника, у которого при силе тока в 1 А возникает сцепленный с ним полный поток Y , равный 1 Вб
Ампер на квадратный метр
(А·м 2 )
1 Тл — индуктивность такого проводника, у которого при силе тока в 1 А возникает сцепленный с ним полный поток Y , равный 1 Вб