[Править]Отношение длины шатуна к длине хода поршня
Более длинный шатун уменьшает боковые нагрузки со стороны поршня на стенки цилиндра, и уменьшает ударные нагрузки. Как следствие двигатель с длинным шатуном служит дольше, и он надёжнее. Однако увеличение длины шатуна ведёт к увеличению габаритов двигателя, его массы и стоимости. Кроме того, при возрастании длины шатуна увеличивается время нахождения поршня в верхней мёртвой точке. Как следствие, увеличивается время, в течение которого газ в цилиндре находится при высокой температуре, что ведёт к повышенному нагреву двигателя.
В настоящее время более актуальным параметром оценки ДВС является отношение хода поршня к диаметру цилиндра или наоборот. Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, чуть больше диаметра цилиндра.
[Править]Газораспределительный механизм
Клапаны обычно управляются через распределительный вал, вращающийся со скоростью, равной половине скорости коленчатого вала. Распределительный вал имеет несколько кулачковых механизмов, каждый из которых рассчитан так, чтобы открывать и закрывать «свой» клапан в определённое время цикла.
Во многих двигателях используются один или несколько распределительных валов, расположенных над рядом цилиндров (или над каждым рядом цилиндров). Помимо верхнего расположения распредвала часто встречается, казалось бы, забытое на легковых авто нижнее положение распредвала в блоке цилиндров. При этом кинематическая цепочка включает (снизу вверх) толкатели штанги и коромысла. Эта система, применение которой обусловлено простотой, надёжностью и компактностью, успешно себя зарекомендовала на грузовых автомобилях. Эта схема позволяет конструировать моторы с более низким центром тяжести.
Первая из описанных выше конструкций газораспределительного механизма обычно позволяет двигателям работать с бо́льшими скоростями, поскольку в этом случае имеется более короткая кинематическая цепь от кулачка к клапану.
[Править]Баланс энергии
Двигатели Отто имеют КПД около 35 % — иными словами, 35 % энергии, генерируемой при сжигании топлива, преобразуется в энергию вращательного движения выходного вала двигателя, а остальное теряется в виде тепла. Для сравнения: шеститактный двигатель может преобразовывать в полезную вращательную энергию более 50 % энергии, высвобождаемой при горении топлива.
Современные двигатели часто конструктивно имеют намеренно меньший КПД, чем они могли бы иметь. Это необходимо для уменьшения выбросов с помощью таких средств как система рециркуляции выхлопных газов и каталитический конвертер.
Уменьшению КПД можно препятствовать с помощью системы контроля двигателя (англ.), использующей технологии эффективного сжигания топлива. [1]
R/S двигателя — пояснение и реальный пример
В этой записи мы продолжим рассматривать геометрию ДВС, а конкретнее поговорим об отношении длины шатуна к ходу поршня (Rod length / Stroke ratio по-английски отсюда и сокращенно R/S). Хочу отметить, что этой теме среди так называемых любителей тюнинга отведена отдельная "мифическая" глава, потому что каждый из них трактует параметр R/S и на что он влияет по-своему, и что примечательно, с разными выводами!
Почему же так происходит? Дело в том, уважаемый читатель, что отношение R/S не является интуитивным параметром в дизайне двигателя. В этом блоге мы не будем полагаться на спекуляции и чьи либо мнения, а самостоятельно расчитаем и рассмотрим на реальном примере свойства R/S. В идеале, для рассмотрения эффекта R/S нам нужно изолировать этот параметр в уравнении. Вопрос, как это сделать? Что же, есть вопрос, есть и ответ. Посмотрим еще раз внимательно на Рис. 1 из предыдущей части. (Продублирован ниже). Мы можем найти мгновенное расстояние между осью коленвала и осью поршневого пальца "s", как функцию от мгновенного угла проворота коленчатого вала, куда входят константы l и a. Напомню, что a = 2L для любого двигателя. Отсюда мы и получим ту самую связку l и L. Здесь нет ничего выдающегося, это простая геометрия на уровне 7-го класса. R/S мы рассмотрим через мгновенную скорость, для этого нам нужно найти ds/dt (продифференцировать по времени). Скорость = расстояние/время.
Рис. 1
Для тех, кто рассуждает об R/S без вычислений на данном этапе лежит первый камень предкновения — функция скорости поршня нелинейна! Это значит, что при движении вниз (от ВМТ до НМТ) поршень разгоняется, а затем замедляется в одном такте, после чего он разгоняется вверх от НМТ и замедляется к ВМТ. За 360 градусов (один проворот коленчатого вала) поршень совершает две мгновенных остановки, одну в ВМТ и одну в НМТ, соответственно, где его скорость на какие-то доли секунды равна нулю. Представив все это в уме, одновременно анализируя изменения констант l и a дело не легкое, согласитесь.
Доказательство вывода мгновенной скорости поршня приведено внизу этой записи (Рис. 8) — отложим пока его в сторону. Для того, чтобы мы были "на одной волне" при рассмотрении реального примера необходимо сказать пару слов по поводу мощности и момента. Этой теме я отведу отдельную запись, где поясню подробно что такое работа, различные кпд и тд. Пока что нам надо условиться, что мощность и момент связаны друг с другом. Крутящий момент измеряется усилием на плечо, (на реальном двигателе с помощью динамометра), обычно в еденицах [N.m].
Brake Power (мощность) связана с моментом через угловую скорость, назовем "omega", где
omega = 2*pi*N.
Выше, N — обороты двигателя в секунду. pi — число ‘пи’ 3.14159265…
Из этого следует, что мощность выраженная через момент, W(brake power) = omega*T = 2*pi*N*T
Есть еще такое понятие как "mean effective pressure" (mep) — показатель некоего среднего давления в цилиндре. Ни смотря на то, что расчитанное усредненное давление "brake mean effective pressure" (bmep) показатель весьма условный он дает представление об общей эффективности двс при практическом сравнении определенных классов двс.
bmep может находится как через мощность так и через момент, нет абсолютно никакой разницы.
Для примера,
bmep = 2*pi*T*nr / Vd;
где nr = 2 для 4-х тактного мотора и nr = 1 для двухтактного мотора, а Vd объем
Аналогично,
bmep =
где W(brake power)
Теперь перейдем к самому интересному. Я специально подбирал двс от одного производителя, максимально похожий по всем параметрам, за исключением R/S. Это должна была быть заводская конфигурация. Для примера взяты моторы Alfa Romeo Twin Spark 16V. Первый объемом 1.8 л и второй 2.0 л в их последнем поколении. Упомянутые 4-х цилиндровые моторы имеют 16 клапанов на цилиндр, идентичный впукной коллектор с изменяемым объемом, идентичные головки цилиндров с идентичными фазами ГРМ. Сравнительные параметры приведены в Таблице 1. Основные отличия между этими моторами в поршнях, (Рис. 2) коленчатом вале, наличием балансирных валов на версии 2.0 и небольшие отличия самого блока. Соответственно, различия, в основном, в ходе поршня. То, что надо!
Рис. 2 Взят с ‘alfa155’ forum. вверху, 2.0, внизу 1.8
Как видно из Таблицы 1, мотор 1.8 с геометрией цилиндра
0.99) обычно рассматривается, как более спортивный, оборотистый мотор, имеет R/S
1.75, в то время как более объемный 2-х литровый обладает длинно-ходовой характеристикой (B/S
1.59. Прошу заметить, что оба мотора имеют одинаковую длину шатуна = 145 мм.
Из Таблицы 1 видно, что bmep при максимальном моменте выше для двигателя 1.8, 11.72 бара против 11.55 бара у двухлитрового и в пиковой мощности тенденция сохраняется 10.9 против 10.7. Для лучших атмосферных двигателей, таких как F1 (в прошлом) и американский NASCAR Сup, значения bmep при пиковой мощности находятся в районе 14 — 15 баров. Как показывает практика, планка в 14 баров обычно недостижима для бензинового атмосферного двигателя, с типичной степенью сжатия где присутствует требования к бюджету и надежности.
Вернемся к R/S. На Рис. 3 я построил кривую скорости для двух двигателей, которую мы вывели ранее, для пиковой мощности. По абсциссе располагаются углы проворота коленчатого вала "Crank Angles" C.A. и по оси ординат скорость поршня в [m/s]. На Рис. 3 видно, что пиковая скорость достигается до 90 градусов, а конкретнее 75 градусов проворота для 1.8 и 74 градуса для 2.0. Для данных R/S мы видим, что поршень разгоняется несимметрично относительно середины проворота коленчатого вала в 90 градусов. Еще, мы видим, что при максимальной мощности, пиковая скорость поршня выше для 2-х литрового двигателя.
Рис. 3
Отсюда возникает интересный вопрос:"как отличается амплитуда скорости по сравнению с неким эталоном?" Давайте возьмем за эталон уже упомянутые мельком двигатели формулы 1 и NASCAR Cup. Данные, которые есть для атмосферного мотора примерно 10-ти летней давности хорошо подойдут для сравнения. И так, у F1 2.4л V8, длина шатуна 102 mm, ход 39.77, просто огромнейшее отношение R/S = 2.56, пиковая мощность достигается примерно на 19250 об/мин и составляет 750 bhp и весьма скромным моментом 290 N.m на 17000 об./мин. преимущественно из-за маленького радиуса коленвала. У двигателя Cup 5.86л V8, длина шатуна 157.48 mm, ход 82.55, отношение R/S = 1.91. Максимальная мощность достижима при 9000 об./мин. и составляет >800 bhp, пик крутящего момента при 7500, более чем в два раза превышает F1. Посмотрим на скорости поршня при максимальной мощности на Рис. 4 и сравним с нашим 2.0 литровым примером.
Рис. 4
Оба гоночных двигателя существенно превышают максимальную скорость поршня нашего 2-х литрового мотора, при этом поршни в F1 достигают такой внушительной максимальной скорости за счет высоких оборотов. Ускорения в ВМТ для F1 будут огромными, чтобы совершать такой рывок который позволит разогнать поршень до максимальной скорости за считанные милиметры. Предъявляемое качество к изготовлению деталей которые бы выдерживали такие нагрузки не требует дополнительных комментариев. Оба гоночных двигателя имеют R/S выше, чем наш 2.0 twin spark и пик максимальной скорости завален ближе к 90 градусам, конкретнее 76.5 для Cup и 80 градусов для F1. Все же нас больше интересует разница между нашими выбранными моторами. Часто, показывают нормализованную характеристику со средней скоростью поршня (для каждого случая своя). Это делается для того, чтобы избавится от привязки к оборотам двигателя. Рис. 5 иллюстрирует данное сравнение.
Рис. 5
Посмотрим, что будет при изменении R/S и при всех других одинаковых параметрах на нашем моторе. Рис. 6 показывает, что при увеличении отношения R/S график становится более симметричным, пиковое значение смещается ближе к 90 градусам и амплитуда пика уменьшается. Если наоборот, уменьшать R/S, градиент нарастания скорости увеличивается, пиковое значение смещается ближе к ВМТ и амплитуда пика увеличивается. R/S меньше 1.3 не возможен из-за геометрических данных, сделав длину шатуна короче в блоке, сохраняя прежний ход. По мимо этого, вторичные ускорения выростают при уменьшении R/S. Также, завод изготовитель учитывает градиент нарастания скорости, где R/S неизбежно повлияет на импульс при всасывании топливо-воздушной/воздушной смеси в цилиндр, так и на нарастание объема и площади при горении.
Рис. 6
Обсудим и ускорение. Первичное ускорение обладает наибольшей амплитудой с зеркально максимальными значениями в НМТ и ВМТ, как показано синей кривой на Рис. 7. Важно проверять ускорения в предельно нагруженных режимах, при наибольшей проектировочной скорости поршня (в красной зоне). Вторичное ускорение добавляет в ВМТ и компенсирует в НМТ. Это значит, что наибольшая нагрузка на шатуны именно в ВМТ. (На растягивание нагрузки опаснее, чем на сжатие). При малом R/S вторичное ускорение увеличвается, это вызвано более выраженным боковым отклонением большого конца шатуна. Следственно, могут повышаться вибрации. Иногда сумарное ускорение не имеет пика в НМТ, а до и после как показано на Рис. 7. Это один из признаков возможного возникновения вибраций. При R/S > 2.0 минимум лежит ровно в 180.
Рис. 7 взят для примера с ‘epi-eng.com’
Рис. 8
Заключение
В данной записи наглядно показано влияние R/S на характеристику скорости поршня рассматриваемых двух двс. На мой взгляд, инженеры Альфа Ромео пытались вносить изменения, которые бы, с одной стороны, помогли использовать идентичную впускную систему и головку блока, что они и сделали, а также лонично и внесение в конструкцию балансировочных валов на 2-х литровой версии в связи со снижением R/S. Более легкие поршни на 2-х литровой версии тоже весьма позитивный момент, учитывая их возросшие скорости.
Длина шатуна
Длина шатуна L определяется из соотношения ? = R/L, где R-радиус кривошипа. При увеличении R (укороченный шатун) возрастает максимальный угол отклонения шатуна, что вынуждает в нижней части цилиндра делать вырезы, повышается боковое давление на стенку цилиндра, в связи с чем растут потери на трение и кроме того увеличиваются силы инерции второго порядка, уменьшается высота двигателя, вес двигателя и вес шатуна. Удлинение шатуна дает уменьшение угла наклона, однако это приводит к увеличению его массы, а, следовательно, сил инерции.
Степень сжатия
Степень сжатия является одним из основных параметров, от которых зависит экономичность двигателя. С увеличением ? увеличивается индикаторный и эффективный КПД двигателя. Однако рост ? ограничивается уменьшением прочности деталей и ростом механических потерь в двигателе.
Степень сжатия ? в дизелях с непосредственным впрыскиванием встречается в пределах 12. 18.С увеличением ? увеличивается индикаторный КПД, однако для двигателей с наддувом увеличивается максимальное давление цикла pz. В автотракторных дизелях степень сжатия в основном определяется способом смесеобразования и частотой вращения, она также зависит от давления наддува.
Фазы газораспределения
Фазы газораспределения оказывают существенное влияние на показатели газообмена и качество рабочего процесса.
В быстроходных двигателях впускной клапан открывается с опережением 5-30°, т.е. до прихода поршня в ВМТ. Это обеспечивает наличие некоторого проходного сечения с самого начала такта впуска и увеличивает время открытия клапана. Закрывается впускной клапан с запаздыванием 30-90 °, т.е. после прохода поршнем НМТ. Это позволяет использовать инерционный напор всасываемого воздуха и улучшить наполнение.
Выпускной клапан, как правило, открывается с опережением 40-80 °, что значительно уменьшает работу двигателя за время выпуска. Закрытие выпускного клапана происходит, как правило, с запаздыванием 5-45 °, что обеспечивает лучшую очистку камеры сгорания от выпускных газов.
Оптимальные фазы газораспределения определяются экспериментально.
Учитывая всё выше сказанное выбираем три варианты параметров двигателя, результаты которого приведены в таблице
Отношение хода поршня к длинне шатуна
Как правильно форсировать поршневой двигатель по объёму.
Увеличение объема двигателя внутреннего сгорания является самым простым способом поднять моментные (в большей степени) и мощностные характеристики мотора.
Существует несколько возможных вариантов по увеличению объема двигателя ВАЗ-21083 ( и его производных – ВАЗ 2111, 2112, так как все они используют практически одинаковые блоки цилиндров, за исключением применения масляных форсунок в 16-ти клапанных моторах ВАЗ-2112):
Первый (более «народный» – т.к. дешевый) – расточка блока цилиндров под больший диаметр поршня. Затратная часть – работы по расточке блока, стоимость комплекта поршней и колец большего диаметра.
Второй способ (более дорогой) – замена штатного коленчатого вала на другой, имеющий больший радиус кривошипа – больше ход поршня – больше объём . Затратная часть – коленчатый вал (диаметр кривошипа от 74,8 мм до 80 мм), комплект специальных поршней под данный коленчатый вал (т.к. блок цилиндров имеет определенную конечную высоту), поршневые кольца, ну и работы по расточке блока под заданный комплект поршней.
На удивление, рост рабочего объема поршневого двигателя не всегда самый выгодный способ форсировки – иногда, в зависимости от того, что вы хотите получить от мотора, выгоднее доработать головку блока цилиндров с установкой подходящего распределительного вала и после этих операций «снять» большую мощность с вашего силового агрегата.
Естественно, чтобы возможности распределительного вала раскрылись в полную силу, необходима доработка ГБЦ – зачастую довольно серьезная – вплоть до перепрессовки седел и установку клапанов бОльшего диаметра (на 8-ми клапанные моторы хорошо подходят клапаны от BMW , а на 16-ти клапанные – от различных VW и Opel ). Кроме того, нельзя забывать про впускные и выпускные каналы, по которым топливно-воздушная смесь поступает в цилиндры, а отработанные газы «вырываются» с большой скоростью – их необходимо дорабатывать, увеличивая до определенных пределов их сечение, производя внутреннюю полировку и изменяя их профиль.
Кроме ГБЦ, достаточно большое влияние на характер мотора оказывает содержимое и «геометрия» блока цилиндров. Мы не будем обсуждать разные типы поршней и их форму, весовые характеристики коленчатых валов, хотя бесспорно они вносят определенный вклад в характер будущего мотора.
Существует такое понятие, как отношение длины шатуна к ходу поршня, эта характеристика и сам диаметр кривошипа коленчатого вала (ход поршня) существенно влияют на «дыхание» мотора: ведь по своей сути, ДВС – это насос, который прокачивает через себя определенный объем смеси воздуха с топливом за определенный промежуток времени.
В данной статье мы рассмотрим влияние соотношения длинны шатуна и диаметра кривошипа коленчатого вала на «характер» мотора двигателей семейства ВАЗ-2108. В англоязычной литературе это соотношение именуется R / S – rod to stroke ratio , и ему уделяется достаточно серьезное внимание при доработке моторов. Многие источники считают, что «золотой серединой» является величина R / S , равная 1,75.
В Интернете вы сами можете при желании найти достаточно много выкладок и расчетов по геометрии моторов Honda . Отчасти все они будут справедливы и для моторов ВАЗ, так как в обоих случаях речь идет о двигателях относительно небольшого рабочего объема (моторы Honda серий В16А — В20В с объемом соответственно от 1,6 до 2,0 литров, что вполне соотносится с литражом моторов ВАЗ 21083 (2112), получаемым при форсировании путем увеличения рабочего объема). Вот для примера геометрия легендарного мотора В16А (объем 1587 см. куб., мощность 160 л.с.; это первый «гражданский» мотор, имеющий удельную мощность 100 лслитр):
Длина шатуна: 134 мм
Ход поршня: 77 мм
Соотношение R / S : 1,74:1 (что как видим практически близко к «золотой середине»)
Посмотрим какая обстановка с отечественными двигателями (берем только ВАЗ 8-го семейства, т.к. другие не столь актуальны)
21081 – объём 1099 куб. см
— ход 60,6 мм
— диаметр поршня 76 мм
— длина шатуна 121 мм
— R/S = 1,996
2108 — объём 1288 куб. см
— ход 71 мм
— диаметр поршня 76 мм
— длина шатуна 121 мм
— R/S = 1,7
21083 — объём 1499 куб. см.
— ход 71 мм
— диаметр поршня 82 мм
— длина шатуна 121 мм
— R/S = 1,7
21084 — объём 1580 куб см.
— ход 74,8 мм
— диаметр поршня 82 мм
— длина шатуна 121 мм
— R/S = 1,61
Нестандартные конфигурации двигателя 21083 (табл. 1) :
Шатун 132 мм могут устанавливаться в стандартный блок цилиндров ВАЗ 21083 только при использовании 2-х колечных поршней.
Эффект большого R/S:
ЗА: Позволяет поршню дольше находиться в ВМТ, что обеспечивает лучшее горение топливной смеси, т.е. более полное сгорание топливной смеси, более высокое давление на поршень после прохождения ВМТ, более высокая температура в камере сгорания. В результате хороший момент на средних и высоких оборотах. Длинный шатун уменьшает трение пары «поршень-цилиндр», а это особенно важно при рабочем ходе поршня.
ПРОТИВ: Мотор, собранный с достаточно большим значением R / S не обеспечивает хорошее наполнение цилиндров на низких и средних частотах вращения КВ, из-за снижения скорости воздушного потока (из-за уменьшения скорости движения поршня после ВМТ, в момент открытия впускного клапана). Большая вероятность появления детонации из-за высокой температуры в камере сгорания и длительного времени нахождения поршня в ВМТ.
Эффект малого R / S :
ЗА: Обеспечивает очень хорошую скорость наполнения цилиндров на низких и средних частотах вращения КВ, так как скорость движения поршня от ВМТ больше, разряжение нарастает быстрее, что улучшает наполнение цилиндров, более высокая скорость движения топливовоздушной смеси делает смесь более гомогенной (однородной) что способствует лучшему сгоранию. Преимущества: более низкие требования к доработке и диаметрам каналов ГБЦ, чем на моторе с высоким соотношением R / S.
ПРОТИВ: Малая величина RS означает, больший угол наклона шатуна. Это значит, что большая сила будет толкать поршень в горизонтальной плоскости. Для мотора это означает следующее:
Большая нагрузка на шатун (особенно на центр шатуна), что делает разрушение шатуна более вероятным. Разрушение шатуна само по себе мало вероятно, кроме случаев обрыва, при заклинивании и гидроударе, как правило, шатун рвется у верхней или
нижней головки под углом приблизительно 45 градусов к оси шатуна.
Увеличение нагрузки на стенки блока цилиндров, большая нагрузка на поршни и кольца, увеличение рабочей температуры вследствие повышенного трения, как результат, более быстрый износ стенок цилиндра, колец, и ухудшении условий смазки. Износ этого участка зависит от величины смещения оси пальца отн. оси поршня и от значения максимального угла наклона шатуна, т.е. при применении "кованных" поршней со смещенным пальцем, износ будет меньше чем при применении стандартных поршей.
Более короткий шатун также увеличивает скорость движения поршня, что влияет на износ и увеличение трения. Максимальная скорость поршня приходится на угол около 80 градусов поворота коленчатого вала от ВМТ, для мотора с коленвалом 74,8 мм при 5600 оборотов в минуту она равна 22,92 м/с при шатуне 121 мм., и 22,80м/с., при шатуне 129 мм.
Наиболее весомым является зависимость ускорения поршня от длины шатуна. Большие значения ускорения положительно влияют на наполнение цилиндров на малых оборотах, что ведет к «тяговитости» двигателя в следствии лучшего наполнения. Но на высоких оборотах из-за инерционности потока во впускной трубе происходит эффект запирания на впускном клапане (т.е объем цилиндра над поршнем растет быстрее, чем может заполняться через клапанную щель, что ведет к ухудшению наполнения и мощностных характеристик на высоких оборотах). В случае длинного шатуна на малых оборотах происходит обратный выброс смеси, но на высоких нет явления запирания.
По вполне понятным причинам, АВТОВАЗ комплектует свои моторы шатуном 121мм (он обеспечивает 83-му мотору R/S = 1,7, что вполне удовлетворительно). Но для «тюнингаторов», использующих КВ с большим радиусом кривошипа, шатун 121 мм обеспечивает не очень хорошее отношение R/S (см. табл. 1), поэтому на рынке «нестандартных», а-ля «спортивных» запчастей существуют и продаются шатуны с большей длинной – 129, 132 мм, цена их правда не столь привлекательна, она колеблется от 70 до 200 долларов за комплект. Еще не стоит забывать, что «экстра ходы» поршня компенсируются уменьшением компрессионной высоты поршня (смещением поршневого пальца вверх) или увеличением высоты блока цилиндров. Т.к. компрессионную высоту можно уменьшать до определенного предела, то следующим шагом будет замена блока цилиндров на более высокий, что повлечет за собой немалые расходы финансовых средств. Все эти действия направлены для того, чтобы увеличить значение R/S.
Благодарим за ценные комментарии Алексея Шмидта ("СВ-Строй", г.Тольятти)